a. Graph the function. b. Draw tangent lines to the graph at point whose x -coordinates are –2, 0, and 1. c. Find f ' ( x ) by determining lim x → 0 f ( x + h ) − f ( x ) h . d. d) Find f ' ( − 2 ) , f ' ( 0 , ) and f ' ( 1 ) . These slopes should match those of the lines you drew in part ( b ). f ( x ) = x 3
a. Graph the function. b. Draw tangent lines to the graph at point whose x -coordinates are –2, 0, and 1. c. Find f ' ( x ) by determining lim x → 0 f ( x + h ) − f ( x ) h . d. d) Find f ' ( − 2 ) , f ' ( 0 , ) and f ' ( 1 ) . These slopes should match those of the lines you drew in part ( b ). f ( x ) = x 3
5+
4
3
2
1.
-B
-2
-1
1
4
5
-1
-2
-3
-4
-5
Complete an equation for the function graphed above
y =
60
फं
+
2
T
2
-2
-3
2
4 5 6
The graph above shows the function f(x). The graph below shows g(x).
फ
3
-1
-2
2
g(x) is a transformation of f(x) where g(x) = Af(Bx) where:
A =
B =
Let f(x) = 4√√
If g(x) is the graph of f(x) shifted up 6 units and right 3 units, write a formula for g(x)
g(x)=
Chapter 1 Solutions
Pearson eText Calculus and Its Applications, Brief Edition -- Instant Access (Pearson+)
Elementary Statistics: Picturing the World (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Differential Equation | MIT 18.01SC Single Variable Calculus, Fall 2010; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=HaOHUfymsuk;License: Standard YouTube License, CC-BY