(a)
The comparison between the brightness of sunlight on Earth and the brightness of sunlight on Pluto at perihelion. The distance of Pluto from the Sun at perihelion is
(a)
Answer to Problem 53Q
Solution:
The ratio of Sun’s brightness on Pluto at perihelion and the brightness on Earth is
Explanation of Solution
Given data:
The distance between Pluto and Sun at perihelion is
Formula used:
According to the Inverse square law, the brightness of sunlight is inversely proportional to the square of the distance between the sun and the object.
Explanation:
The distance between the Sun and the Earth is about
Brightness of the Sun on the Earth is:
Similarly,
Brightness of the Sun on the Pluto at perihelion is:
Consider the brightness of the Sun on the Pluto at perihelion compared to the brightness on Earth be
Combining these two above expressions to get,
Conclusion:
The brightness of the Sun on Pluto at perihelion is
(b)
The comparison between the brightness of sunlight on Earth and the brightness of sunlight on Pluto at aphelion. The distance of Pluto from the Sun at aphelion is
(b)
Answer to Problem 53Q
Solution:
The ratio of Sun’s brightness on Pluto at aphelion and the brightness on Earth is
Explanation of Solution
Given data:
The distance of Pluto and Sun at aphelion is
Formula used:
According to Inverse square law, the brightness of sunlight is inversely proportional to the square of the distance between the sun and the object.
Explanation:
The distance between the Sun and the Earth is near about
Brightness of the Sun on the Earth is:
Similarly,
Brightness of the Sun on the Pluto at aphelion is:
Consider the brightness of the Sun on the Pluto at aphelion compared to the brightness on Earth be
Combinine these two above expressions to get,
Conclusion:
The brightness of the Sun on Pluto at aphelion is
(c)
The comparison between the brightness of sunlight on Pluto at perihelion and the brightness of sunlight on Pluto at aphelion.
(c)
Answer to Problem 53Q
Solution:
The ratio of brightness of the Sun on Pluto at perihelion and that at aphelion of Pluto is
Explanation of Solution
Given data:
The distance of Pluto and Sun at aphelion is
Formula used:
According to Inverse square law, the brightness of sunlight is inversely proportional to the square of the distance between the sun and the object.
Explanation:
By referring the part (a) and (b),
Brightness of the sunlight at perihelion as compared to the brightness on Earth is:
Brightness of the sunlight at aphelion as compared to the brightness on Earth is:
The brightness of sunlight at perihelion compared to the brightness at aphelion is:
Substitute
Conclusion:
The brightness of the Sun on Pluto at perihelion is
Want to see more full solutions like this?
Chapter 14 Solutions
EBK LOOSE-LEAF VERSION OF UNIVERSE
- 3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \). (b) Repeat part (a) for 13 electrons. Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.arrow_forwardNo chatgpt pls will upvotearrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: Incident ray at A Note: This diagram is not to scale. a Air (n = 1.00) Water (n = 1.34) 1) Determine the angle of refraction of the ray of light in the water. Barrow_forward
- Hi can u please solvearrow_forward6. Bending a lens in OpticStudio or OSLO. In either package, create a BK7 singlet lens of 10 mm semi-diameter and with 10 mm thickness. Set the wavelength to the (default) 0.55 microns and a single on-axis field point at infinite object distance. Set the image distance to 200 mm. Make the first surface the stop insure that the lens is fully filled (that is, that the entrance beam has a radius of 10 mm). Use the lens-maker's equation to calculate initial glass curvatures assuming you want a symmetric, bi-convex lens with an effective focal length of 200 mm. Get this working and examine the RMS spot size using the "Text" tab of the Spot Diagram analysis tab (OpticStudio) or the Spd command of the text widnow (OSLO). You should find the lens is far from diffraction limited, with a spot size of more than 100 microns. Now let's optimize this lens. In OpticStudio, create a default merit function optimizing on spot size.Then insert one extra line at the top of the merit function. Assign the…arrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answer .arrow_forward
- Use the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forwardGood explanation it sure experts solve it.arrow_forward
- No chatgpt pls will upvote Asaparrow_forwardA satellite has a mass of 100kg and is located at 2.00 x 10^6 m above the surface of the earth. a) What is the potential energy associated with the satellite at this loction? b) What is the magnitude of the gravitational force on the satellite?arrow_forwardNo chatgpt pls will upvotearrow_forward
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill