
Concept explainers
(a)
Interpretation:
Whether the statement “the molar volume of a gas at
Concept introduction:
The ideal gas equation is used to represent the relation between the volume, pressure, temperature and number of moles of an ideal gas. The ideal gas equation is represented as given below.

Answer to Problem 48E
The statement “the molar volume of a gas at
Explanation of Solution
It is given that pressure and temperature for the gas is
The conversion factor of temperature unit
Substitute the value of temperature in the above equation as shown below.
Ideal gas equation is given by the formula as shown below.
Where,
•
•
•
•
•
Rearrange the above equation in terms of molar volume as shown below.
Substitute the values of pressure and temperature of gas in the equation (2) to calculate molar volume as shown below.
The molar volume of a gas at
Therefore, the statement “the molar volume of a gas at
The statement “the molar volume of a gas at
(b)
Interpretation:
Whether the statement “the mass of
Concept introduction:
The ideal gas equation is used to represent the relation between the volume, pressure, temperature and number of moles of an ideal gas. The ideal gas equation is represented as given below.

Answer to Problem 48E
The statement “the mass of
Explanation of Solution
Ideal gas equation is given by the formula as shown below.
Where,
•
•
•
•
•
The number of moles is given by the formula as shown below.
Substitute the above equation in equation (1) as shown below.
Rearrange the above equation in terms of mass as shown below.
From the above equation, it is clear that the mass of a gas is directly proportion to its molar mass. This means the mass of
Therefore, the statement “the mass of
The statement “the mass of
(c)
Interpretation:
Whether the statement “at a given temperature and pressure, the densities of two gases are proportional to their molar masses” is true or false is to be stated.
Concept introduction:
The ideal gas equation is used to represent the relation between the volume, pressure, temperature and number of moles of an ideal gas. The ideal gas equation is represented as given below.

Answer to Problem 48E
The statement “at a given temperature and pressure, the densities of two gases are proportional to their molar masses” is true.
Explanation of Solution
Ideal gas equation is given by the formula as shown below.
Where,
•
•
•
•
•
The number of moles is given by the formula as shown below.
Substitute the above equation in equation (1) as shown below.
The density is given by the formula as shown below.
Rearrange equation (2) in terms of density using the above equation as shown below.
From the above equation, it is clear that the molar mass of a gas is directly proportion to its density.
Therefore, the statement “at a given temperature and pressure, the densities of two gases are proportional to their molar masses” is true.
The statement “at a given temperature and pressure, the densities of two gases are proportional to their molar masses” is true.
(d)
Interpretation:
Whether the statement “to change liters of a gas to moles, multiply by
Concept introduction:
The ideal gas equation is used to represent the relation between the volume, pressure, temperature and number of moles of an ideal gas. The ideal gas equation is represented as given below.

Answer to Problem 48E
The statement “to change liters of a gas to moles, multiply by
Explanation of Solution
Ideal gas equation is given by the formula as shown below.
Where,
•
•
•
•
•
Rearrange equation (1) in terms of number of moles as shown below.
From the above equation, it is clear that to calculate number of moles from liters of a gas, the volume is multiplied by
Therefore, the statement “to change liters of a gas to moles, multiply by
The statement “to change liters of a gas to moles, multiply by
Want to see more full solutions like this?
Chapter 14 Solutions
Bundle: Introductory Chemistry: An Active Learning Approach, 6th + OWLv2, 1 term (6 months) Printed Access Card
- Experiment 27 hates & Mechanisms of Reations Method I visual Clock Reaction A. Concentration effects on reaction Rates Iodine Run [I] mol/L [S₂082] | Time mo/L (SCC) 0.04 54.7 Log 1/ Time Temp Log [ ] 13,20] (time) / [I] 199 20.06 23.0 30.04 0.04 0.04 80.0 22.8 45 40.02 0.04 79.0 21.6 50.08 0.03 51.0 22.4 60-080-02 95.0 23.4 7 0.08 0-01 1970 23.4 8 0.08 0.04 16.1 22.6arrow_forward(15 pts) Consider the molecule B2H6. Generate a molecular orbital diagram but this time using a different approach that draws on your knowledge and ability to put concepts together. First use VSEPR or some other method to make sure you know the ground state structure of the molecule. Next, generate an MO diagram for BH2. Sketch the highest occupied and lowest unoccupied MOs of the BH2 fragment. These are called frontier orbitals. Now use these frontier orbitals as your basis set for producing LGO's for B2H6. Since the BH2 frontier orbitals become the LGOS, you will have to think about what is in the middle of the molecule and treat its basis as well. Do you arrive at the same qualitative MO diagram as is discussed in the book? Sketch the new highest occupied and lowest unoccupied MOs for the molecule (B2H6).arrow_forwardQ8: Propose an efficient synthesis of cyclopentene from cyclopentane.arrow_forward
- Q7: Use compound A-D, design two different ways to synthesize E. Which way is preferred? Please explain. CH3I ONa NaOCH 3 A B C D E OCH3arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward(10 pts) The density of metallic copper is 8.92 g cm³. The structure of this metal is cubic close-packed. What is the atomic radius of copper in copper metal?arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardQ3: Rank the following compounds in increasing reactivity of E1 and E2 eliminations, respectively. Br ca. go do A CI CI B C CI Darrow_forward
- Q5: Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2). H₂O דיי "Br KN3 CH3CH2OH NaNH2 NH3 Page 3 of 6 Chem 0310 Organic Chemistry 1 HW Problem Sets CI Br excess NaOCH 3 CH3OH Br KOC(CH3)3 DuckDuckGarrow_forwardQ4: Circle the substrate that gives a single alkene product in a E2 elimination. CI CI Br Brarrow_forwardPlease calculate the chemical shift of each protonsarrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co




