MATHEMATICAL APPLICATIONS FOR THE MGT
12th Edition
ISBN: 9780357865095
Author: HARSHBARGER
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 31RE
To determine
To calculate: The number of units of each product, 1 and 2, that will maximize the profit and the maximum profit where the weekly profit (in dollars) from a sale of two products is given by
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
a) Suppose that we are carrying out the 1-phase simplex algorithm on a linear program in
standard inequality form (with 3 variables and 4 constraints) and suppose that we have
reached a point where we have obtained the following tableau. Apply one more pivot
operation, indicating the highlighted row and column and the row operations you carry
out. What can you conclude from your updated tableau?
x1 12 23
81
82
83
S4
$1
-20
1 1
0
0
0
3
82
3 0
-2
0
1
2
0
6
12
1
1
-3
0
0
1
0
2
84
-3 0
2
0
0
-1 1 4
2
-2
0 11
0
0
-4
0
-8
b) Solve the following linear program using the 2-phase simplex algorithm. You should give
the initial tableau and each further tableau produced during the execution of the
algorithm. If the program has an optimal solution, give this solution and state its
objective value. If it does not have an optimal solution, say why.
maximize 21 - - 2x2 + x3 - 4x4
subject to 2x1+x22x3x4≥ 1,
5x1+x2-x3-4 -1,
2x1+x2-x3-342,
1, 2, 3, 4 ≥0.
Suppose we have a linear program in standard equation form
maximize c'x
subject to Ax=b,
x≥ 0.
and suppose u, v, and w are all optimal solutions to this linear program.
(a) Prove that zu+v+w is an optimal solution.
(b) If you try to adapt your proof from part (a) to prove that that u+v+w
is an optimal solution, say exactly which part(s) of the proof go wrong.
(c) If you try to adapt your proof from part (a) to prove that u+v-w is an
optimal solution, say exactly which part(s) of the proof go wrong.
(a) For the following linear programme, sketch the feasible region and the direction
of the objective function. Use you sketch to find an optimal solution to the
program. State the optimal solution and give the objective value for this
solution.
maximize +22
subject to 1 + 2x2 ≤ 4,
1 +3x2 ≤ 12,
x1, x2 ≥0
(b) For the following linear programme, sketch the feasible region and the direction
of the objective function. Explain, making reference to your sketch, why this
linear programme is unbounded.
maximize
₁+%2
subject to
-2x1 + x2 ≤ 4,
x1 - 2x2 ≤4,
x1 + x2 ≥ 7,
x1,x20
Give any feasible solution to the linear programme for which the objective
value is 40 (you do not need to justify your answer).
Chapter 14 Solutions
MATHEMATICAL APPLICATIONS FOR THE MGT
Ch. 14.1 - CHECKPOINT
1. Find the domain of the function
Ch. 14.1 - CHECKPOINT
2. (a) If .
(b) If .
Ch. 14.1 - Prob. 1ECh. 14.1 - Prob. 2ECh. 14.1 - Prob. 3ECh. 14.1 - Prob. 4ECh. 14.1 - Prob. 5ECh. 14.1 - Prob. 6ECh. 14.1 - Prob. 7ECh. 14.1 - Prob. 8E
Ch. 14.1 - Prob. 9ECh. 14.1 - Prob. 10ECh. 14.1 - Prob. 11ECh. 14.1 - Prob. 12ECh. 14.1 - Prob. 13ECh. 14.1 - Prob. 14ECh. 14.1 - Prob. 15ECh. 14.1 - Prob. 16ECh. 14.1 - In Problems 15-22, evaluate each function as...Ch. 14.1 - Prob. 18ECh. 14.1 - Prob. 19ECh. 14.1 - Prob. 20ECh. 14.1 - Prob. 21ECh. 14.1 - In Problems 15-22, evaluate each function as...Ch. 14.1 - Prob. 23ECh. 14.1 - Prob. 24ECh. 14.1 - 25. Curve speeds One method traffic planners use...Ch. 14.1 - Prob. 26ECh. 14.1 - Prob. 27ECh. 14.1 - Prob. 28ECh. 14.1 - 29. Mortgage The following tables show that a...Ch. 14.1 - 30. Wind chill Wind and cold temperatures combine...Ch. 14.1 - Prob. 31ECh. 14.1 - Prob. 32ECh. 14.1 - Prob. 33ECh. 14.1 - Prob. 34ECh. 14.1 - Prob. 35ECh. 14.1 - 36. Profit The Kirk Kelly Kandy Company makes two...Ch. 14.1 - Prob. 37ECh. 14.1 - Prob. 38ECh. 14.2 - Prob. 1CPCh. 14.2 - Prob. 2CPCh. 14.2 - Prob. 3CPCh. 14.2 - Prob. 4CPCh. 14.2 - Prob. 5CPCh. 14.2 - Prob. 1ECh. 14.2 - Prob. 2ECh. 14.2 - Prob. 3ECh. 14.2 - Prob. 4ECh. 14.2 - Prob. 5ECh. 14.2 - Prob. 6ECh. 14.2 - Prob. 7ECh. 14.2 - Prob. 8ECh. 14.2 - Prob. 9ECh. 14.2 - Prob. 10ECh. 14.2 - Prob. 11ECh. 14.2 - Prob. 12ECh. 14.2 - Prob. 13ECh. 14.2 - Prob. 14ECh. 14.2 - Prob. 15ECh. 14.2 - Prob. 16ECh. 14.2 - Prob. 17ECh. 14.2 - Prob. 18ECh. 14.2 -
19. Find the slope of the tangent in the...Ch. 14.2 -
20. Find the slope of the tangent in the...Ch. 14.2 - Prob. 21ECh. 14.2 - Prob. 22ECh. 14.2 - Prob. 23ECh. 14.2 - Prob. 24ECh. 14.2 - Prob. 25ECh. 14.2 - Prob. 26ECh. 14.2 - Prob. 27ECh. 14.2 - Prob. 28ECh. 14.2 - Prob. 29ECh. 14.2 - Prob. 30ECh. 14.2 - Prob. 31ECh. 14.2 - 32. If , find the following.
(a) (b) (c) (d)
Ch. 14.2 - 33. If , find the following.
Ch. 14.2 - 34. If , find the following.
Ch. 14.2 - Prob. 35ECh. 14.2 -
Ch. 14.2 -
Ch. 14.2 - Prob. 38ECh. 14.2 - Prob. 39ECh. 14.2 - Prob. 40ECh. 14.2 - 41. .
Ch. 14.2 - .
Ch. 14.2 - Prob. 43ECh. 14.2 -
Ch. 14.2 - 45. Mortgage When a homeowner has a 25-year...Ch. 14.2 - 46. Mass transportation ridership Suppose that in...Ch. 14.2 - 47. Wilson's lot size formula In economics, the...Ch. 14.2 - 48. Cost Suppose that the total cost (in dollars)...Ch. 14.2 - 49. Pesticide Suppose that the number of thousands...Ch. 14.2 - 50. Profit Suppose that the profit (in dollars)...Ch. 14.2 - Prob. 51ECh. 14.2 - Prob. 52ECh. 14.2 - 53. Production Suppose that the output Q (in...Ch. 14.2 - Prob. 54ECh. 14.2 - Prob. 55ECh. 14.2 - Prob. 56ECh. 14.3 - CHECKPOINT
If the joint cost in dollars for two...Ch. 14.3 - Prob. 2CPCh. 14.3 - Prob. 3CPCh. 14.3 - Prob. 1ECh. 14.3 - Prob. 2ECh. 14.3 - 3. The total cost of producing 1 unit of a product...Ch. 14.3 - Prob. 4ECh. 14.3 - Prob. 5ECh. 14.3 - Prob. 6ECh. 14.3 - Prob. 7ECh. 14.3 - Prob. 8ECh. 14.3 - 9. If the joint cost function for two products is
...Ch. 14.3 - 10. Suppose the joint cost function for x units of...Ch. 14.3 - 11. Suppose that the joint cost function for two...Ch. 14.3 - Prob. 12ECh. 14.3 - Prob. 13ECh. 14.3 - Prob. 14ECh. 14.3 - Prob. 15ECh. 14.3 - Prob. 16ECh. 14.3 - Prob. 17ECh. 14.3 - Prob. 18ECh. 14.3 - Prob. 19ECh. 14.3 - Prob. 20ECh. 14.3 - 21. Suppose the Cobb-Douglas production function...Ch. 14.3 - Prob. 22ECh. 14.3 - Prob. 23ECh. 14.3 - Prob. 24ECh. 14.3 - Prob. 25ECh. 14.3 - Prob. 26ECh. 14.3 - Prob. 27ECh. 14.3 - Prob. 28ECh. 14.3 - Prob. 29ECh. 14.3 - Prob. 30ECh. 14.4 - CHECKPOINT
Suppose that
Find
Ch. 14.4 - Prob. 2CPCh. 14.4 - Prob. 3CPCh. 14.4 - Prob. 4CPCh. 14.4 - Prob. 1ECh. 14.4 - Prob. 2ECh. 14.4 - Prob. 3ECh. 14.4 - Prob. 4ECh. 14.4 - Prob. 5ECh. 14.4 - Prob. 6ECh. 14.4 - Prob. 7ECh. 14.4 - Prob. 8ECh. 14.4 - Prob. 9ECh. 14.4 - Prob. 10ECh. 14.4 - Prob. 11ECh. 14.4 - Prob. 12ECh. 14.4 - Prob. 13ECh. 14.4 - Prob. 14ECh. 14.4 - Prob. 15ECh. 14.4 - Prob. 16ECh. 14.4 - Prob. 17ECh. 14.4 - Prob. 18ECh. 14.4 - 19. Profit Suppose that the quarterly profit from...Ch. 14.4 - Prob. 20ECh. 14.4 - 21. Nutrition A new food is designed to add weight...Ch. 14.4 - Prob. 22ECh. 14.4 - 23. Production Suppose that
tons
is the...Ch. 14.4 - 24. Production Suppose that x units of one input...Ch. 14.4 - 25. Profit Suppose that a manufacturer produces...Ch. 14.4 - Prob. 26ECh. 14.4 - Prob. 27ECh. 14.4 - Prob. 28ECh. 14.4 - 29. Profit A company manufactures two products, A...Ch. 14.4 - Prob. 30ECh. 14.4 - Prob. 31ECh. 14.4 - The manager of the Sea Islands Chicken Shack is...Ch. 14.4 - Prob. 33ECh. 14.4 - Prob. 34ECh. 14.4 - Prob. 35ECh. 14.4 - Prob. 36ECh. 14.5 - Prob. 1CPCh. 14.5 - Prob. 2CPCh. 14.5 - Prob. 3CPCh. 14.5 - Prob. 4CPCh. 14.5 - Prob. 1ECh. 14.5 - Prob. 2ECh. 14.5 - Prob. 3ECh. 14.5 - Prob. 4ECh. 14.5 - Prob. 5ECh. 14.5 - Prob. 6ECh. 14.5 - Prob. 7ECh. 14.5 - Prob. 8ECh. 14.5 - Prob. 9ECh. 14.5 - Prob. 10ECh. 14.5 - Prob. 11ECh. 14.5 - Prob. 12ECh. 14.5 - Prob. 13ECh. 14.5 - Prob. 14ECh. 14.5 - Prob. 15ECh. 14.5 - 16. Utility Suppose that the budget constraint in...Ch. 14.5 - 17. Utility Suppose that the utility function for...Ch. 14.5 - 18. Utility Suppose that the utility function for...Ch. 14.5 - Prob. 19ECh. 14.5 - Prob. 20ECh. 14.5 - 21. Cost A firm has two plants, X and Y. Suppose...Ch. 14.5 - Prob. 22ECh. 14.5 - Prob. 23ECh. 14.5 - Prob. 24ECh. 14.5 - 25. Manufacturing Find the dimensions (in...Ch. 14.5 - Prob. 26ECh. 14 - 1. What is the domain of ?
Ch. 14 - Prob. 2RECh. 14 - Prob. 3RECh. 14 - 4. If .
Ch. 14 - Prob. 5RECh. 14 - Prob. 6RECh. 14 - Prob. 7RECh. 14 - Prob. 8RECh. 14 - Prob. 9RECh. 14 - Prob. 10RECh. 14 - Prob. 11RECh. 14 - Prob. 12RECh. 14 - Prob. 13RECh. 14 - Prob. 14RECh. 14 - In Problems 15-18, find the second partials.
Ch. 14 - Prob. 16RECh. 14 - Prob. 17RECh. 14 - Prob. 18RECh. 14 - Prob. 19RECh. 14 - Prob. 20RECh. 14 - Prob. 21RECh. 14 - Prob. 22RECh. 14 - Prob. 23RECh. 14 - Prob. 24RECh. 14 - Prob. 25RECh. 14 - Prob. 26RECh. 14 - Prob. 27RECh. 14 - Prob. 28RECh. 14 - Prob. 29RECh. 14 - Prob. 30RECh. 14 - Prob. 31RECh. 14 - Prob. 32RECh. 14 - Prob. 33RECh. 14 - Prob. 34RECh. 14 - 35. Modeling US. average wage The table gives the...Ch. 14 - Prob. 36RECh. 14 - Prob. 1TCh. 14 - Prob. 2TCh. 14 - Prob. 3TCh. 14 - Prob. 4TCh. 14 - Prob. 5TCh. 14 - Prob. 6TCh. 14 - 7. Suppose the demand functions for two products...Ch. 14 - Prob. 8TCh. 14 - 9. Find x and y that maximize the utility function...Ch. 14 - Prob. 10T
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- find the domain of the function f(x)arrow_forwardFor each of the following functions, find the Taylor Series about the indicated center and also determine the interval of convergence for the series. 1. f(x) = ex-2, c = 2 Π == 2. f(x) = sin(x), c = 2arrow_forwardQUESTION 5. Show that if 0 ≤r≤n, then r+2 r r (c) + (+³) + (+³) +- + (*) -(+) n n+ = r (1)...using induction on n. (2) ...using a combinatorial proof.arrow_forward
- Use a power series to approximate each of the following to within 3 decimal places: 1. arctan 2. In (1.01)arrow_forwardFor each of the following power series, find the interval of convergence and the radius of convergence: n² 1.0 (x + 1)" n=1 շո 3n 2. Σ n=1 (x-3)n n3arrow_forwardUse a known series to find a power series in x that has the given function as its sum: 1. xcos(x³) 2. In (1+x) xarrow_forward
- if n is odd integer then 4 does not divide narrow_forwardor W Annuities L Question 2, 5.3.7 > Find the future value for the ordinary annuity with the given payment and interest rate. PMT = $2,000; 1.65% compounded quarterly for 11 years. The future value of the ordinary annuity is $ (Do not round until the final answer. Then round to the nearest cent as needed.) example Get more help Q Search 30 Larrow_forwardFind the cdf of a random variable Y whose pdf is given by; 2, 0≤x≤1 1/3, 0≤x≤1 a) f(x)=3, 2≤x≤4 0, elsewhere 2, 1≤x≤2 b) f(x)= (3-x)2, 2≤x≤3 0, elsewherearrow_forward
- For all integers a and b, a + b is not ≡ 0(mod n) if and only if a is not ≡ 0(mod n)a or is not b ≡ 0(mod n). Is conjecture true or false?why?arrow_forwardor W Annuities L Question 2, 5.3.7 > Find the future value for the ordinary annuity with the given payment and interest rate. PMT = $2,000; 1.65% compounded quarterly for 11 years. The future value of the ordinary annuity is $ (Do not round until the final answer. Then round to the nearest cent as needed.) example Get more help Q Search 30 Larrow_forwardThere are m users who share a computer system. Each user alternates between "thinking" intervals whose durations are independent exponentially distributed with parameter Y, and an "active" mode that starts by submitting a service re- quest. The server can only serve one request at a time, and will serve a request completely before serving other requests. The service times of different requests are independent exponentially distributed random variables with parameter μ, and also independent of the thinking times of the users. Construct a Markov chain model and derive the steady-state distribution of the number of pending requests, including the one presently served, if any.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageAlgebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage Learning
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Algebra for College Students
Algebra
ISBN:9781285195780
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning




Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Finding Local Maxima and Minima by Differentiation; Author: Professor Dave Explains;https://www.youtube.com/watch?v=pvLj1s7SOtk;License: Standard YouTube License, CC-BY