PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
The 4-lb collar is compressed against a spring a distance of 6 inches and then releasedfrom rest. The spring can be considered elastic and has a constant of k = 10 lb/in. Thespring is not adhered to the collar, and can be considered massless, so it will notextend into tension.
Plot the acceleration of the collar as a function of x for x = 0 to 7 inches.What is the velocity as the collar leaves the spring?
The collar is given a speed v₁ = 5 m/s to the left at position A. What is its speed at B? The guide is
smooth so that the collar is not subject to any friction. The unstretched length of the spring is R = 1.2
m and the spring constant is k = 500 N/m. (15 points).
The 5-lb collar slides on the smooth rod, so that when
it is at 4 it has a speed of 10 ft/s. If the spring to
which it is attached has an unstretched length of 3 ft.
and a stiffness of k = 10 lb/ft, determine the normal
force on the collar and the acceleration of the collar at
this instant.
Solution:
2 ft
10 ft/s
Knowledge Booster
Similar questions
- The horizontal force P = 40-10t N (t is the time measured in seconds) is applied to the 2- kg collar that slides along the inclined rod. 2 kg- -P = (40– 10r)N At time t = 0, the position coordinate of the collar is x = 0, and its velocity is vo = 3 m/s directed down the rod. Find the time T and the speed Sof the collar when it returns to the position x = 0 for the first time. Neglect friction.arrow_forwardThe 150-lb car of an amusement partk ride is connected to a rotating telescopic boom. When r = 15 ft, the car is moving on a horizontal circular path with a speed of 30 ft/s. If the boom is shortened at a rate of 3 ft/s, determine the speed of the car when r = 10 ft. Also, find the work done by the axial for F along the boom. Neglect the size of the car and the mass of the boom.arrow_forwardDetermine an expression for the velocity vA of the cart A down the incline in terms of the upward velocity vB of cylinder B. If h = 1.50 m, x = 4.30 m, and vB = 2.72 m/s, what is vA?arrow_forward
- The small body has a speed vA = 4.3 m/s at point A. Neglecting friction, determine its speed at point B after it has risen 0.85 m. Is knowledge of the shape of the track necessary?arrow_forwardThe 75-kg man climbs up the rope with an acceleration of 0.25m/s^2, measured relative to the rope. Determine the tension in the rope and the acceleration of the 80-kg block.arrow_forwardThe spring is not stretched or compressed when “s=0.8m" and the 11 kg block which is subjected to a force of 105 N has a speed of 5.5 m/s down the smooth plane. Using "THE PRINCIPLE OF WORK AND ENERGY", find the distance "s" when the block STOPS. k = 200 N/m 5 m/s F = 100 N 30°arrow_forward
- A ball of radius 10mm can move along the frictionless slider of length L=141mm. It’s motion is affected by the device on surface B since it is experiencing attraction to that surface. At t=0, it is positioned at point A. Starting at rest, determine its velocity (m/s) as it comes in contact with surface B, if the ball’s acceleration is defined by a=c/(L-x)2 where c=50.4 m3/sarrow_forwardFind the acceleration of the blocks and the tension in the chord if both have a mass equal to 100 kg. The two blocks rest on inclined surfaces at 30 degrees and 60 degrees respectively. Assume μ = 0.20.arrow_forwardThe launching catapult of the aircraft carrier gives the jet fighter a constant acceleration of 59 m/s2 from rest relative to the flight deck and launches the aircraft in a distance of 80 m measured along the angled takeoff ramp. If the carrier is moving at a steady 31 knots (1 knot = 1.852 km/h), determine the magnitude v of the actual velocity of the fighter when it is launched. Assume 8 = 13° Answer: v= MI km/h 0 UCarrow_forward
- The sliders A and B are connected by a light rigid bar of length l = 0.5m andmove with negligible friction in the slots, both of which lie in a horizontal plane.For the position where xA = 0.4m, the velocity of A is vA = 0.9m/s to the right.Determine the acceleration of each slider and the force in the bar at this instant.arrow_forwardTask 2 The package has a weight of 30 N and slides down the chute. When it reaches the curved portion AB, it is traveling at 2.4 m / s. If the chute is smooth, determine the speed of the package when it reaches the intermediate point C when 0 = 12° and when it reaches the horizontal plane. Also, find the normal force on the package at C. radius = 6 m 450 eMechanica.com -2.4 m/sarrow_forwardThe small body has a speed VA = 6.2 m/s at point A. Neglecting friction, determine its speed at point B after it has risen 1.51 m. Is knowledge of the shape of the track necessary? + 1.51 m Answer: VB = i 6.2 m/s A m/s Barrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY