(a)
Interpretation:
What is the freezing point of the given liquid must be explained?
Concept Introduction:
Freezing point of a liquid is the temperature at which the vapor pressure of the liquid is equal to the vapor pressure of solid.
(b)
Interpretation:
What is the boiling point of the liquid must be explained?
Concept Introduction:
Boiling point is the temperature at which a liquid starts boiling to vapor and until all the liquid is not boiled off temperature remains same. The vapor pressure of the liquid is equal to atmospheric pressure.
(c)
Interpretation:
Which out of heat of fusion or heat of vaporization is greater must be explained?
Concept Introduction:
Both heat of fusion and heat of vaporization is done at constant temperature with the help of latent heat.
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
EBK INTRODUCTORY CHEMISTRY
- Define critical temperature and critical pressure. In terms of the kinetic molecular theory, why is it impossible for a substance to exist as a liquid above its critical temperature?arrow_forwardThe following data are the equilibrium vapor pressure of limonene, C10H16, at various temperatures. (Limonene is used as a scent in commercial products.) (a) Plot these data as ln P versus 1/T so that you have a graph resembling the one in Figure 11.13. (b) At what temperature does the liquid have an equilibrium vapor pressure of 250 mm Hg? At what temperature is it 650 mm Hg? (c) What is the normal boiling point of limonene? (d) Calculate the molar enthalpy of vaporization for limonene using the Clausius-Clapeyron equation.arrow_forwardWhat are intermolecular forces? How do they differ from intramolecular forces? What are dipole-dipole forces? How do typical dipole-dipole forces differ from hydrogen bonding interactions? In what ways are they similar? What are London dispersion forces? How do typical London dispersion forces differ from dipole-dipole forces? In what ways are they similar? Describe the relationship between molecular size and strength of London dispersion forces. Place the major types of intermolecular forces in order of increasing strength. Is there some overlap? That is, can the strongest London dispersion forces be greater than some dipole-dipole forces? Give an example of such an instance.arrow_forward
- Explain why evaporation leads to cooling of the liquid.arrow_forwardA 1.50-g sample of methanol (CH3OH) is placed in an evacuated 1.00-L container at 30 C. (a) Calculate the pressure in the container if all of the methanol is vaporized. (Assume the ideal gas law, PV = nRT.) (b) The vapor pressure of methanol at 30 C is 158 torr. What mass of methanol actually evaporates? Is liquid in equilibrium with vapor in the vessel?arrow_forwardOf the four general types of solids, which one(s) (a) are generally insoluble in water? (b) have very high melting points? (c) conduct electricity as solids?arrow_forward
- Equilibrium vapor pressures of benzene, C6H6, at various temperatures are given in the table. (a) What is the normal boiling point of benzene? (b) Plot these data so that you have a graph resembling the one in Figure 11.12. At what temperature does the liquid have an equilibrium vapor pressure of 250 mm Hg? At what temperature is the vapor pressure 650 mm Hg? (c) Calculate the molar enthalpy of vaporization for benzene using the ClausiusClapeyron equation.arrow_forward8.87 Use the vapor pressure curves illustrated here to answer the questions that follow. (a) What is the vapor pressure of ethanol (C2H5OH) at 60°C? (b) Considering only carbon disulfide (CS2) and ethanol, which has the stranger intermolecular forces in the liquid state? (c) At what temperature does heptane (C7H16) have a vapor pressure of 500 mm Hg? (d) What are the approximate normal boiling pains of each of the three substances? (e) At a pressure of 400 mm Hg and a temperature of 70°C, is each substance a liquid, a gas, or a mixture of liquid and gas?arrow_forwardClassify each of the following statements as true or false. a Intermolecular attractions are stronger in liquids than in gases. b Substances with weak intermolecular attractions generally have low vapor pressures. c Liquids with high molar heats of vaporization usually are more viscous than liquids with low molar heats of vaporization. d A substance with a relatively high surface tension usually has a very low boiling point. e All other things being equal, hydrogen bonds are weaker than induced dipole or dipole forces. f Induced dipole forces become very strong between large molecules. g Other things being equal, nonpolar molecules have stronger intermolecular attractions than polar molecules. h The essential feature of a dynamic equilibrium is that the rates of opposing changes are equal. i Equilibrium vapor pressure depends on the concentration of a vapor above its own liquid. j The heat of vaporization is equal to the heat of fusion, but with opposite sign. k The boiling point of a liquid is a fixed property of the liquid. l If you break shatter an amorphous solid, it will break in straight lines, but if you break a crystalline solid, it will break in curved lines. m Ionic crystals are seldom soluble in water. n Molecular crystals are nearly always soluble in water. o The numerical value of heat of vaporization is always larger than the numerical value of heat of condensation. p The units of heat of fusion are kJ/gC. q The temperature of water drops while it is freezing. r Specific heat is conerned with a change in temperature.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning