
Concept explainers
The genes for the trails that Mendel worked with are either all located on different chromosomes or behave as if they were. How did this help Mendel recognize the principle of independent assortment?
a. Otherwise, his dihybrid crosses would not have produced a 9:3:3:1 ratio of F2
b. The occurrence of individuals with unexpected phenotypes led him to the discovery of recombination.
c. It led him to the realization that the behavior of chromosomes during meiosis explained his results.
d. It meant that the alleles involved were either dominant or recessive, which gave 3:1 ratios in the F1 generation.

Introduction:
The principle of independent assortment states that the genes coding for different traits is passed on to the next generation independent of each other. This law of independence assortment holds true only in the case where the two pairs of characters are coded by genes that are present on two different chromosomes.
Answer to Problem 1TYK
Correct answer:
In case the genes for the trait would have been on the same chromosome, the ratio in the F2 generation would have been other than 9:3:3:1.
Explanation of Solution
Explanation/Justification for the correct answer:
Option (a) is given as the pairs are independently assorted the progeny can have different phenotypes. In case the genes are present on the same chromosome, they might show some degree of linkage. Furthermore, the presence of the genes on the same chromosome would have resulted in crossing over and alteration of the ratio of the F2 generation. Hence, Option (a) is correct.
Explanation for incorrect answers:
Option (b) is given as the discovery of the recombination as a result of the occurrence of the individuals with unexpected phenotypes. However, the process of recombination was discovered by the experiments conducted by Thomas Hunt Morgan and his colleagues on Drosophila. So, this is the wrong answer.
Option (c) is given as the results obtained during meiosis were due to the behavior of chromosomes. Mendel believed that the determinants of heredity never show blending and never gets modified. So, this is the wrong answer.
Option (d) is given as the 3:1 ratio in the F1 generation signifying that the alleles involved were either dominant or recessive. The principle of the independent assortment was introduced because of the dihybrid cross. So, this is the wrong answer.
Hence, options (b), (c), and (d) are incorrect.
Thus, the location of the chromosomes for the genes with which Mendel worked resulted in the unexpected phenotypes that helped him in recognizing the principle of independent assortment.
Want to see more full solutions like this?
Chapter 14 Solutions
Biological Science, Loose-leaf Edition (7th Edition)
- Ch.21 What causes patients infected with the yellow fever virus to turn yellow (jaundice)? A. low blood pressure and anemia B. excess leukocytes C. alteration of skin pigments D. liver damage in final stage of disease — What is the advantage for malarial parasites to grow and replicate in red blood cells? A. able to spread quickly B. able to avoid immune detection C. low oxygen environment for growth D. cooler area of the body for growth — Which microbe does not live part of its lifecycle outside humans? A. Toxoplasma gondii B. Cytomegalovirus C. Francisella tularensis D. Plasmodium falciparum — explain your answer thoroughlyarrow_forwardCh.22 Streptococcus pneumoniae has a capsule to protect it from killing by alveolar macrophages, which kill bacteria by… A. cytokines B. antibodies C. complement D. phagocytosis — What fact about the influenza virus allows the dramatic antigenic shift that generates novel strains? A. very large size B. enveloped C. segmented genome D. over 100 genes — explain your answer thoroughlyarrow_forwardWhat is this?arrow_forward
- Molecular Biology A-C components of the question are corresponding to attached image labeled 1. D component of the question is corresponding to attached image labeled 2. For a eukaryotic mRNA, the sequences is as follows where AUGrepresents the start codon, the yellow is the Kozak sequence and (XXX) just represents any codonfor an amino acid (no stop codons here). G-cap and polyA tail are not shown A. How long is the peptide produced?B. What is the function (a sentence) of the UAA highlighted in blue?C. If the sequence highlighted in blue were changed from UAA to UAG, how would that affecttranslation? D. (1) The sequence highlighted in yellow above is moved to a new position indicated below. Howwould that affect translation? (2) How long would be the protein produced from this new mRNA? Thank youarrow_forwardMolecular Biology Question Explain why the cell doesn’t need 61 tRNAs (one for each codon). Please help. Thank youarrow_forwardMolecular Biology You discover a disease causing mutation (indicated by the arrow) that alters splicing of its mRNA. This mutation (a base substitution in the splicing sequence) eliminates a 3’ splice site resulting in the inclusion of the second intron (I2) in the final mRNA. We are going to pretend that this intron is short having only 15 nucleotides (most introns are much longer so this is just to make things simple) with the following sequence shown below in bold. The ( ) indicate the reading frames in the exons; the included intron 2 sequences are in bold. A. Would you expected this change to be harmful? ExplainB. If you were to do gene therapy to fix this problem, briefly explain what type of gene therapy youwould use to correct this. Please help. Thank youarrow_forward
- Molecular Biology Question Please help. Thank you Explain what is meant by the term “defective virus.” Explain how a defective virus is able to replicate.arrow_forwardMolecular Biology Explain why changing the codon GGG to GGA should not be harmful. Please help . Thank youarrow_forwardStage Percent Time in Hours Interphase .60 14.4 Prophase .20 4.8 Metaphase .10 2.4 Anaphase .06 1.44 Telophase .03 .72 Cytukinesis .01 .24 Can you summarize the results in the chart and explain which phases are faster and why the slower ones are slow?arrow_forward
- Can you circle a cell in the different stages of mitosis? 1.prophase 2.metaphase 3.anaphase 4.telophase 5.cytokinesisarrow_forwardWhich microbe does not live part of its lifecycle outside humans? A. Toxoplasma gondii B. Cytomegalovirus C. Francisella tularensis D. Plasmodium falciparum explain your answer thoroughly.arrow_forwardSelect all of the following that the ablation (knockout) or ectopoic expression (gain of function) of Hox can contribute to. Another set of wings in the fruit fly, duplication of fingernails, ectopic ears in mice, excess feathers in duck/quail chimeras, and homeosis of segment 2 to jaw in Hox2a mutantsarrow_forward
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningBiology: The Dynamic Science (MindTap Course List)BiologyISBN:9781305389892Author:Peter J. Russell, Paul E. Hertz, Beverly McMillanPublisher:Cengage LearningBiology Today and Tomorrow without Physiology (Mi...BiologyISBN:9781305117396Author:Cecie Starr, Christine Evers, Lisa StarrPublisher:Cengage Learning
- Biology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxConcepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax CollegeHuman Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage Learning





