Tech Manual for Erjavec's Automotive Technology: A Systems Approach
Tech Manual for Erjavec's Automotive Technology: A Systems Approach
6th Edition
ISBN: 9781133933731
Author: ERJAVEC, Jack, Thompson, Rob
Publisher: Delmar Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 14, Problem 1RQ

What is the most efficient way to increase a radiators efficiency?

Expert Solution & Answer
Check Mark
To determine

To increase a radiator’s efficiency the most efficient way that is used.

Answer to Problem 1RQ

The temperature difference between the coolant and air passing through.

Explanation of Solution

The function of a radiator is to transfer heat from the engine to the atmosphere or the air passing through it. There are two types of radiators depending on the flow of coolant inside the radiator, viz. down flow and crossflow radiators. The efficiency of the radiator depends on a number of factors: the area of contact, the temperature difference, and the coolant capacity. The area of the radiator depends on its design and compactness of the engine whereas the difference in temperature depends upon the coolant inside the radiator and the temperature of the cooling air passing through it. The efficiency also depends on the pumping power as higher pumping force to reduce the coolant temperature faster, but it also needs higher energy to run the pump.

Conclusion:

As the area and other design parameters of a radiator depend on various aspects, the efficiency of the radiator depends on the temperature difference between the coolant and air passing through.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Problem 3: The inertia matrix can be written in dyadic form which is particularly useful when inertia information is required in various vector bases. On the next page is a right rectangular pyramid of total mass m. Note the location of point Q. (a) Determine the inertia dyadic for the pyramid P, relative to point Q, i.e., 7%, for unit vectors ₁₁, 2, 3.
Can you solve for v? Also, what is A x u
The external loads on the element shown below at the free end are F = 1.75 kN, P = 9.0 kN, and T = 72 Nm. The tube's outer diameter is 50 mm and the inner diameter is 45 mm. Given: A(the cross-sectional area) is 3.73 cm², Moment inertial I is 10.55 cm4, and J polar moment inertial is 21.1 cm4. Determine the following. (1) The critical element(s) of the bar. (2) Show the state of stress on a stress element for each critical element. -120 mm- F

Chapter 14 Solutions

Tech Manual for Erjavec's Automotive Technology: A Systems Approach

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Automotive Technology: A Systems Approach (MindTa...
Mechanical Engineering
ISBN:9781133612315
Author:Jack Erjavec, Rob Thompson
Publisher:Cengage Learning
Text book image
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
Text book image
Electrical Transformers and Rotating Machines
Mechanical Engineering
ISBN:9781305494817
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Understanding Thermal Radiation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=FDmYCI_xYlA;License: Standard youtube license