a. Graph the function. b. Draw tangent lines to the graph at point whose x -coordinates are –2, 0, and 1. c. Find f ' ( x ) by determining lim x → 0 f ( x + h ) − f ( x ) h . d. d) Find f ' ( − 2 ) , f ' ( 0 , ) and f ' ( 1 ) . These slopes should match those of the lines you drew in part ( b ). f ( x ) = 1 2 x 2
a. Graph the function. b. Draw tangent lines to the graph at point whose x -coordinates are –2, 0, and 1. c. Find f ' ( x ) by determining lim x → 0 f ( x + h ) − f ( x ) h . d. d) Find f ' ( − 2 ) , f ' ( 0 , ) and f ' ( 1 ) . These slopes should match those of the lines you drew in part ( b ). f ( x ) = 1 2 x 2
PLEASE SHOW ME THE RIGHT ANSWER/SOLUTION
SHOW ME ALL THE NEDDED STEP
13: If the perimeter of a square is shrinking at a rate of 8 inches per second, find the rate at which its area is changing when its area is 25 square inches.
DO NOT GIVE THE WRONG ANSWER
SHOW ME ALL THE NEEDED STEPS
11: A rectangle has a base that is growing at a rate of 3 inches per second and a height that is shrinking at a rate of one inch per second. When the base is 12 inches and the height is 5 inches, at what rate is the area of the rectangle changing?
please answer by showing all the dfalowing necessary step
DO NOT GIVE ME THE WRONG ANSWER
The sides of a cube of ice are melting at a rate of 1 inch per hour. When its volume is 64 cubic inches, at what rate is its volume changing?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Differential Equation | MIT 18.01SC Single Variable Calculus, Fall 2010; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=HaOHUfymsuk;License: Standard YouTube License, CC-BY