Sears And Zemansky's University Physics With Modern Physics
Sears And Zemansky's University Physics With Modern Physics
13th Edition
ISBN: 9780321897961
Author: YOUNG, Hugh D./
Publisher: Pearson College Div
Question
Book Icon
Chapter 14, Problem 1DQ
To determine

The distance travelled by the object in one period, effect on time and maximum speed of the object.

Expert Solution & Answer
Check Mark

Explanation of Solution

Section 1:

To determine: The distance travelled by the object in one period after making twice of the amplitude.

Answer: The distance travelled by the object in one period after making twice of the amplitude is 4A.

Explanation:

Given Info: The motion is SHM for a object and the amplitude is A .

The simple harmonic motion is a kind of motion when the retarding force is directly proportional to the displacement by Hook’s Law.

Formula to calculate displacement of a particle in simple harmonic motion is,

x=Acos(ωt+ϕ)`

  • x is the displacement.
  • A is the amplitude.
  • ω is the angular velocity of the object.
  • t is the time period.
  • ϕ is the phase angle in SHM.

Amplitude is the maximum displacement travelled by the object about is mean position.

From above relation it is visible that the displacement of any object is directly proportional to the amplitude of the motion. The displacement here ranges from A to A.

The distance travelled is,

x=A(A)=2A

When we double the amplitude the displacement is,

Substitute 2A for A in above equation to find x .

x=2(2A)=4A

Thus, by increasing the amplitude by 2 , the distance travelled by the object in one period is 4A.

Section 2:

To determine: The effect on time period after making twice of the amplitude.

Answer: The effect on time period after making twice of the amplitude is zero so the time is same.

Explanation:

Given Info: The motion is SHM for a object and the amplitude is A .

The equation of time period in SHM is,

T=2πmk

  • m is the mass of the object
  • k is the spring constant

From above equation it is clear that the time function is independent of the amplitude so by increasing or decreasing the magnitude no changes will be seen in the time of travel.

Thus, the effect on time period after making twice of the amplitude is zero so the time is same.

Section 3:

To determine: The maximum speed of the object.

Answer: The maximum speed of the object is doubled.

Explanation:

Given Info: The motion is SHM for a object and the amplitude is A .

The equation of velocity in SHM is,

vm=Aω

  • vm is the maximum velocity of the object

The above relation indicates that by increasing the amplitude the velocity of object will also increase.

Thus, the maximum speed of the object is doubled after multiplying the amplitude by two.

Conclusion:

Therefore, the distance travelled by the object in one period is 4A , time period remains the same and maximum speed of the object is double to the previous one.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Need help on the following questions on biomechanics. (Please refer to images below)A gymnast weighing 68 kg attempts a handstand using only one arm. He plants his handat an angle resulting in the reaction force shown.A) Find the resultant force (acting on the Center of Mass)B) Find the resultant moment (acting on the Center of Mass)C) Draw the resultant force and moment about the center of mass on the figure below. Will the gymnast rotate, translate, or both? And in which direction?
Please help me on the following question (Please refer to image below)An Olympic lifter (m = 103kg) is holding a lift with a mass of 350 kg. The barexerts a purely vertical force that is equally distributed between both hands. Each arm has amass of 9 kg, are 0.8m long and form a 40° angle with the horizontal. The CoM for each armis 0.5 m from hand. Assuming the lifter is facing us in the diagram below, his right deltoidinserts 14cm from the shoulder at an angle of 13° counter-clockwise from the humerus.A) You are interested in calculating the force in the right deltoid. Draw a free body diagramof the right arm including the external forces, joint reaction forces, a coordinate system andstate your assumptions.B) Find the force exerted by the right deltoidC) Find the shoulder joint contact force. Report your answer using the magnitude and directionof the shoulder force vector.
I need help with part B. I cant seem to get the correct answer. Please walk me through what youre doing to get to the answer and what that could be

Chapter 14 Solutions

Sears And Zemansky's University Physics With Modern Physics

Ch. 14 - Prob. 11DQCh. 14 - Prob. 12DQCh. 14 - Prob. 13DQCh. 14 - Prob. 14DQCh. 14 - Prob. 15DQCh. 14 - Prob. 16DQCh. 14 - Prob. 17DQCh. 14 - Prob. 18DQCh. 14 - Prob. 19DQCh. 14 - Prob. 20DQCh. 14 - Prob. 1ECh. 14 - Prob. 2ECh. 14 - Prob. 3ECh. 14 - Prob. 4ECh. 14 - Prob. 5ECh. 14 - Prob. 6ECh. 14 - Prob. 7ECh. 14 - Prob. 8ECh. 14 - Prob. 9ECh. 14 - Prob. 10ECh. 14 - Prob. 11ECh. 14 - Prob. 12ECh. 14 - Prob. 13ECh. 14 - Prob. 14ECh. 14 - Prob. 15ECh. 14 - Prob. 16ECh. 14 - Prob. 17ECh. 14 - Prob. 18ECh. 14 - Prob. 19ECh. 14 - Prob. 20ECh. 14 - Prob. 21ECh. 14 - Prob. 22ECh. 14 - Prob. 23ECh. 14 - Prob. 24ECh. 14 - Prob. 25ECh. 14 - Prob. 26ECh. 14 - Prob. 27ECh. 14 - Prob. 28ECh. 14 - Prob. 29ECh. 14 - Prob. 30ECh. 14 - Prob. 31ECh. 14 - Prob. 32ECh. 14 - Prob. 33ECh. 14 - Prob. 34ECh. 14 - Prob. 35ECh. 14 - Prob. 36ECh. 14 - Prob. 37ECh. 14 - Prob. 38ECh. 14 - Prob. 39ECh. 14 - Prob. 40ECh. 14 - Prob. 41ECh. 14 - Prob. 42ECh. 14 - Prob. 43ECh. 14 - Prob. 44ECh. 14 - Prob. 45ECh. 14 - Prob. 46ECh. 14 - Prob. 47ECh. 14 - Prob. 48ECh. 14 - Prob. 49ECh. 14 - Prob. 50ECh. 14 - Prob. 51ECh. 14 - Prob. 52ECh. 14 - Prob. 53ECh. 14 - Prob. 54ECh. 14 - Prob. 55ECh. 14 - Prob. 56ECh. 14 - Prob. 57ECh. 14 - Prob. 58ECh. 14 - Prob. 59ECh. 14 - Prob. 60ECh. 14 - Prob. 61ECh. 14 - Prob. 62ECh. 14 - Prob. 63ECh. 14 - Prob. 64ECh. 14 - Prob. 65ECh. 14 - Prob. 66ECh. 14 - Prob. 67ECh. 14 - Prob. 68ECh. 14 - Prob. 69ECh. 14 - Prob. 70ECh. 14 - Prob. 71ECh. 14 - Prob. 72ECh. 14 - Prob. 73ECh. 14 - Prob. 74ECh. 14 - Prob. 75ECh. 14 - Prob. 76ECh. 14 - Prob. 77ECh. 14 - Prob. 78ECh. 14 - Prob. 79ECh. 14 - Prob. 80ECh. 14 - Prob. 81ECh. 14 - Prob. 82ECh. 14 - Prob. 83ECh. 14 - Prob. 84ECh. 14 - Prob. 85ECh. 14 - Prob. 86ECh. 14 - Prob. 87ECh. 14 - Prob. 88ECh. 14 - Prob. 89ECh. 14 - Prob. 90ECh. 14 - Prob. 91ECh. 14 - Prob. 92ECh. 14 - Prob. 93ECh. 14 - Prob. 94ECh. 14 - Prob. 95ECh. 14 - Prob. 96ECh. 14 - Prob. 97ECh. 14 - Prob. 98ECh. 14 - Prob. 99ECh. 14 - Prob. 100ECh. 14 - Prob. 101ECh. 14 - Prob. 102ECh. 14 - Prob. 103E
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON