COLLEGE PHYSICS (LL W/WEBASSIGN)
COLLEGE PHYSICS (LL W/WEBASSIGN)
11th Edition
ISBN: 9781337741644
Author: SERWAY
Publisher: CENGAGE L
bartleby

Concept explainers

bartleby

Videos

Textbook Question
100%
Book Icon
Chapter 14, Problem 18P

A trumpet creates a sound intensity level of 1.15 × 102 dB at a distance of 1.00 m. (a) What is the sound intensity of a trumpet at this distance? (b) What is the sound intensity of five trumpets at this distance? (c) Find the sound intensity of five trumpets at the location of the first row of an audience, 8.00 m away, assuming, for simplicity, the sound energy propagates uniformly in all directions. (d) Calculate the decibel level of the five trumpets in the first row. (e) If the trumpets are being played in an outdoor auditorium, how far away, in theory, can their combined sound be heard? (f) In practice such a sound could not be heard once the listener was 2-3 km away. Why can’t the sound be heard at the distance found in part (e)? Hint: In a very quiet room the ambient sound intensity level is about 30 dB.

(a)

Expert Solution
Check Mark
To determine
The sound intensity of a trumpet at a distance of 1m.

Answer to Problem 18P

Solution: The sound intensity of a trumpet at a distance of 1m is 0.316W/m2

Explanation of Solution

Given Info: The intensity level of sound of a trumpet is 1.15×102dB at a distance of 1.00 m.

Formula to calculate the sound intensity of a trumpet is,

     β=10log(II0)

  • I0 is reference Intensity,
  • I is the intensity of a trumpet,

Simplify and rearrange the expression in terms of I .

β10=log(II0)10β10=(II0)I=I010β10

The value of reference intensity constant is 1.0×1012W/m2

Substitute 1.15×102dB for β and 1.0×1012W/m2 for I0 in the above expression to get I .

I=(1.0×1012W/m2)101.15×10210=(1×1012W/m2)×1011.5=0.316W/m2

Conclusion:

The sound intensity of a trumpet at a distance of 1m is 0.316W/m2

(b)

Expert Solution
Check Mark
To determine
The sound intensity of a five trumpet at a distance of 1m.

Answer to Problem 18P

Solution: The sound intensity of a trumpet at a distance of 1m is 1.58W/m2

Explanation of Solution

Given Info: The sound intensity of a trumpet at a distance of 1m is 0.316W/m2

Formula for intensity of five trumpets,

I'=5I

  • I is the intensity of sound for five trumpets.

Sound intensity of a trumpet at a distance of 1m from (a) is 0.316W/m2 .

Substitute 0.316W/m2 for I in the above expression to get I'

I'=5(0.316W/m2)=  1.58W/m2

Conclusion:

The sound intensity of a five trumpets at a distance of 1m is 1.58W/m2

(c)

Expert Solution
Check Mark
To determine
The sound intensity of five trumpets at a location.

Answer to Problem 18P

Solution: The sound intensity of five trumpets located at the first row of an audience at a distance of 8m is 2.47×102W/m2

Explanation of Solution

Given Info: The distance of five trumpets from the first row of an audience is 8m.

Formula for ratio of sound intensity of trumpets,

I1I2=r22r12

  • I1 is the sound intensity at a distance of  1 m
  • I2 is the sound intensity at a distance of 8 m
  • r1 is the distance of the trumpet at 1 m.
  • r2 is the distance of a trumpet at a first row of an audience

Rearrange the expression in terms of I2 .

I2=I1r12r22

Substitute 1 m for r1 , 8 m for r2   and 1.58W/m2 for I1 in the above expression to get I2 .

I2=(1.58W/m2)(1m)2(8m)2=2.47×102W/m2

Conclusion:

Sound intensity of five trumpets located at the first row of an audience at a distance of 8m is 2.47×102W/m2

(d)

Expert Solution
Check Mark
To determine
The sound intensity level for first five trumpets

Answer to Problem 18P

Solution: The sound intensity level for first five trumpets is 104 dB

Explanation of Solution

Given Info: Sound intensity of a trumpet at a distance of 8 m from (c) is 2.47×102W/m2 and intensity constant is 1×1012W/m2

Formula for intensity level of a sound,

β=10log(II0)

  • I0 is intensity constant
  • I is the intensity of a sound

Substitute 2.47×102W/m2 for I and 1×1012W/m2 for I0 in the above expression to get β

β=10log(2.47×102W/m21×1012W/m2)=104dB

Conclusion:

The sound intensity level for first five trumpets is 104 dB

(e)

Expert Solution
Check Mark
To determine
Distance heard in the outdoor auditorium

Answer to Problem 18P

Solution: Distance heard in the outdoor auditorium is 1.26×106m

Explanation of Solution

Given Info: distance of five trumpets located at the first row of an audience is 8m, intensity constant is from (a) 1×1012W/m2 and Sound intensity of a trumpet at a distance of 8 m from (c) is 2.47×102W/m2

Formula for ratio of sound intensity of trumpets,

I1I2=r22r12

  • I1 is the reference intensity.
  • I2 is the sound intensity of a trumpet at a distance of  8 m
  • r1 is the distance of the trumpet heard in the outdoor auditorium
  • r2 is the distance of a trumpet from a first row of an audience 8 m.

Rearrange the expression in terms of  r1 .

r1=r2I2I1

Substitute 8 m for r2 , 1×1012W/m2 for I1 and 2.47×102W/m2 for I2   in the above expression to get r1 .

r1=8m2.47×102W/m21×1012W/m2=1.26×106m

Conclusion:

Distance heard in the outdoor auditorium is 1.26×106m

(f)

Expert Solution
Check Mark
To determine
Why the sound can be heard at a large distance.

Answer to Problem 18P

Therefore, the sound intensity of wave is much lower than the ambient noise intensity at the distance found in (e)

Explanation of Solution

The proportionality expression relating the intensity I=1r2 .

As you can notice from the above equation, the intensity falls rapidly with increase in distance.

As the distance increases the intensity of the sound decreases and finally it becomes much lower than the ambient noise.

Conclusion:

Therefore, the sound intensity of wave is much lower than the ambient noise intensity at the distance found in (e)

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…
SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]
Page 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…

Chapter 14 Solutions

COLLEGE PHYSICS (LL W/WEBASSIGN)

Ch. 14 - Explain how the distance to a lightning bolt (Fig....Ch. 14 - Two cars are on the same straight road. Car A...Ch. 14 - Why does a vibrating guitar string sound louder...Ch. 14 - You are driving toward the base of a cliff and you...Ch. 14 - Prob. 8CQCh. 14 - Prob. 9CQCh. 14 - Prob. 10CQCh. 14 - An airplane mechanic notices that the sound from a...Ch. 14 - Suppose you hear a clap of thunder 16.2 s after...Ch. 14 - Earthquakes at fault lines in Earths crust create...Ch. 14 - On a hot summer day, the temperature of air in...Ch. 14 - A dolphin located in seawater at a temperature of...Ch. 14 - A group of hikers hears an echo 3.00 s after...Ch. 14 - The range of human hearing extends from...Ch. 14 - Prob. 7PCh. 14 - A stone is dropped from rest into a well. The...Ch. 14 - A hammer strikes one end of a thick steel rail of...Ch. 14 - A person standing 1.00 m from a portable speaker...Ch. 14 - The mating call of a male cicada is among the...Ch. 14 - The intensity level produced by a jet airplane at...Ch. 14 - One of the loudest sounds in recent history was...Ch. 14 - A sound wave from a siren has an intensity of...Ch. 14 - A person wears a hearing aid that uniformly...Ch. 14 - The area of a typical eardrum is about 5.0 105...Ch. 14 - The toadfish makes use of resonance in a closed...Ch. 14 - A trumpet creates a sound intensity level of 1.15 ...Ch. 14 - There is evidence that elephants communicate via...Ch. 14 - A family ice show is held at an enclosed arena....Ch. 14 - A train sounds its horn as it approaches an...Ch. 14 - An outside loudspeaker (considered a small source)...Ch. 14 - Show that the difference in decibel levels 1 and 2...Ch. 14 - A skyrocket explodes 100 m above the ground (Fig....Ch. 14 - The Doppler Effect A baseball hits a car, breaking...Ch. 14 - A train is moving past a crossing where cars are...Ch. 14 - A commuter train passes a passenger platform at a...Ch. 14 - An airplane traveling at half the speed of sound...Ch. 14 - Two trains on separate tracks move toward each...Ch. 14 - At rest, a cars horn sounds the note A (440 Hz)....Ch. 14 - An alert physics student stands beside the tracks...Ch. 14 - A bat flying at 5.00 m/s is chasing an insect...Ch. 14 - A tuning fork vibrating at 512 Hz falls from rest...Ch. 14 - Expectant parents are thrilled to hear their...Ch. 14 - A supersonic jet traveling at Mach 3.00 at an...Ch. 14 - A yellow submarine traveling horizontally at 11.0...Ch. 14 - Two cars are stuck in a traffic jam and each...Ch. 14 - The acoustical system shown in Figure P14.38 is...Ch. 14 - Prob. 39PCh. 14 - Prob. 40PCh. 14 - A pair of speakers separated by a distance d =...Ch. 14 - Prob. 42PCh. 14 - A stretched string fixed at each end has a mass of...Ch. 14 - Prob. 44PCh. 14 - A stretched string of length L is observed to...Ch. 14 - A distance of 5.00 cm is measured between two...Ch. 14 - A steel wire with mass 25.0 g and length 1.35 m is...Ch. 14 - Prob. 48PCh. 14 - A 12.0-kg object hangs in equilibrium from a...Ch. 14 - In the arrangement shown in Figure P14.50, an...Ch. 14 - Prob. 51PCh. 14 - Standing-ware vibrations are set up in a crystal...Ch. 14 - A cars 30.0-kg front tire is suspended by a spring...Ch. 14 - Prob. 54PCh. 14 - Prob. 55PCh. 14 - The overall length of a piccolo is 32.0 cm. The...Ch. 14 - The human ear canal is about 2.8 cm long. If it is...Ch. 14 - A tunnel under a river is 2.00 km long. (a) At...Ch. 14 - A pipe open at both ends has a fundamental...Ch. 14 - The adjacent natural frequencies of an organ pipe...Ch. 14 - A guitarist sounds a tuner at 196 Hz while his...Ch. 14 - Two nearby trumpets are sounded together and a...Ch. 14 - Prob. 63PCh. 14 - The G string on a violin has a fundamental...Ch. 14 - Two train whistles have identical frequencies of...Ch. 14 - Two pipes of equal length are each open at one...Ch. 14 - A student holds a tuning dork oscillating at 256...Ch. 14 - Prob. 68PCh. 14 - Some studies suggest that the upper frequency...Ch. 14 - A typical sound level for a buzzing mosquito is 40...Ch. 14 - Assume a 150 W loudspeaker broadcasts sound...Ch. 14 - Two small loudspeakers emit sound waves of...Ch. 14 - An interstate highway has been built through a...Ch. 14 - Prob. 74APCh. 14 - Prob. 75APCh. 14 - Prob. 76APCh. 14 - On a workday, the average decibel level of a busy...Ch. 14 - Prob. 78APCh. 14 - A block with a speaker bolted to it is connected...Ch. 14 - A student stands several meters in front of a...Ch. 14 - Prob. 81APCh. 14 - A 0.500-m-long brass pipe open at both ends has a...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY