EBK GENERAL CHEMISTRY: THE ESSENTIAL CO
7th Edition
ISBN: 9780100257047
Author: Chang
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Question
Chapter 14, Problem 14.92QP
Interpretation Introduction
Interpretation:
The rate law expression under the conditions of very high and very low hydrogen concentrations has to be derived and does the results from the problem 19.80 agree with the rate expressions has to be explained.
Concept introduction:
Rate law: It is an equation that related to the
- Depends on order of the
chemical reaction , the rate law or rate equation also varies.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Predict the organic products that form in the reaction below:
H.
H+
+
OH
H+
Y
Note: You may assume you have an excess of either reactant if the reaction requires more than one of those molecules to form the
products.
In the drawing area below, draw the skeletal ("line") structures of the missing organic products X and Y. You may draw the
structures in any arrangement that you like, so long as they aren't touching.
Explanation
Check
Click and drag to start drawing a
structure.
G
X
C
© 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Access
+
111
Carbonyl Chem
Choosing reagants for a Wittig reaction
What would be the best choices for the missing reagents 1 and 3 in this synthesis?
1. PPh3
3
1
2
2. n-BuLi
• Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like.
Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is.
• Note: if one of your reagents needs to contain a halogen, use bromine.
Explanation
Check
Click and drag to start drawing a structure.
×
©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use
A student proposes the transformation below in one step of an organic synthesis. There may be one or more reactants missing from the left-hand side, but there
are no products missing from the right-hand side. There may also be catalysts, small inorganic reagents, and other important reaction conditions missing from
the arrow.
• Is the student's transformation possible? If not, check the box under the drawing area.
. If the student's transformation is possible, then complete the reaction by adding any missing reactants to the left-hand side, and adding required catalysts,
inorganic reagents, or other important reaction conditions above and below the arrow.
• You do not need to balance the reaction, but be sure every important organic reactant or product is shown.
+
T
X
O
O
лет-ле
HO
OH
HO
OH
This transformation can't be done in one step.
Chapter 14 Solutions
EBK GENERAL CHEMISTRY: THE ESSENTIAL CO
Ch. 14.1 - Practice Exercise Write the rate expressions for...Ch. 14.1 - Practice Exercise Consider the reaction
Suppose...Ch. 14.1 - Review of Concepts
Write a balanced equation for a...Ch. 14.2 - Practice Exercise The reaction of peroxydisulfate...Ch. 14.2 - Prob. 1RCCh. 14.3 - Practice Exercise The reaction is first order in...Ch. 14.3 - Practice Exercise Calculate the half-life of the...Ch. 14.3 - Review of Concepts
Consider the first-order...Ch. 14.3 - Practice Exercise The reaction is second order...Ch. 14.4 - Practice Exercise The second-order rate constant...
Ch. 14.4 - Practice Exercise The first-order rate constant...Ch. 14.4 - Review of Concepts
(a) What can you deduce about...Ch. 14.5 - Practice Exercise The reaction between NO2 and CO...Ch. 14.5 - Prob. 1RCCh. 14.6 - Prob. 1RCCh. 14 - Prob. 14.1QPCh. 14 - 15.2 Explain the difference between physical...Ch. 14 - Prob. 14.3QPCh. 14 - Prob. 14.4QPCh. 14 - Prob. 14.5QPCh. 14 - 14.6 Consider the reaction
Suppose that at a...Ch. 14 - Prob. 14.7QPCh. 14 - 14.8 What are the units for the rate constants of...Ch. 14 - Prob. 14.9QPCh. 14 - Prob. 14.10QPCh. 14 - Prob. 14.11QPCh. 14 - Prob. 14.13QPCh. 14 - Prob. 14.14QPCh. 14 - Prob. 14.15QPCh. 14 - Prob. 14.16QPCh. 14 - Prob. 14.17QPCh. 14 - Prob. 14.18QPCh. 14 - Prob. 14.19QPCh. 14 - Prob. 14.20QPCh. 14 - 14.21 What is the half-life of a compound if 75...Ch. 14 - 14.22 The thermal decomposition of phosphine (PH3)...Ch. 14 - Prob. 14.23QPCh. 14 - Prob. 14.24QPCh. 14 - 14.25 Consider the first-order reaction A → B...Ch. 14 - Prob. 14.26QPCh. 14 - 14.27 Define activation energy. What role does...Ch. 14 - Prob. 14.28QPCh. 14 - Prob. 14.29QPCh. 14 - 14.30 As we know, methane burns readily in oxygen...Ch. 14 - Prob. 14.31QPCh. 14 - Prob. 14.32QPCh. 14 - Prob. 14.33QPCh. 14 - Prob. 14.34QPCh. 14 - Prob. 14.35QPCh. 14 - Prob. 14.36QPCh. 14 - Prob. 14.37QPCh. 14 - 14.38 The rate at which tree crickets chirp is 2.0...Ch. 14 - 14.39 The diagram here describes the initial state...Ch. 14 - Prob. 14.40QPCh. 14 - Prob. 14.41QPCh. 14 - Prob. 14.42QPCh. 14 - 14.43 Explain why termolecular reactions are...Ch. 14 - 14.44 What is the rate-determining step of a...Ch. 14 - Prob. 14.45QPCh. 14 - Prob. 14.46QPCh. 14 - Prob. 14.47QPCh. 14 - Prob. 14.48QPCh. 14 - Prob. 14.49QPCh. 14 - Prob. 14.50QPCh. 14 - Prob. 14.51QPCh. 14 - Prob. 14.52QPCh. 14 - Prob. 14.53QPCh. 14 - Prob. 14.54QPCh. 14 - Prob. 14.55QPCh. 14 - Prob. 14.56QPCh. 14 - Prob. 14.57QPCh. 14 - Prob. 14.58QPCh. 14 - Prob. 14.59QPCh. 14 - Prob. 14.60QPCh. 14 - Prob. 14.61QPCh. 14 - Prob. 14.62QPCh. 14 - Prob. 14.63QPCh. 14 - Prob. 14.64QPCh. 14 - Prob. 14.65QPCh. 14 - 14.66 The decomposition of N2O to N2 and O2 is a...Ch. 14 - Prob. 14.67QPCh. 14 - Prob. 14.68QPCh. 14 - 14.69 Consider the zero-order reaction a → B....Ch. 14 - Prob. 14.70QPCh. 14 - Prob. 14.72QPCh. 14 - Prob. 14.73QPCh. 14 - Prob. 14.74QPCh. 14 - Prob. 14.75QPCh. 14 - Prob. 14.76QPCh. 14 - Prob. 14.77QPCh. 14 - Prob. 14.78QPCh. 14 - Prob. 14.79QPCh. 14 - Prob. 14.80QPCh. 14 - Prob. 14.81QPCh. 14 - Prob. 14.82QPCh. 14 -
14.83 When a mixture of methane and bromine is...Ch. 14 -
14.84 Consider this elementary step:
(a)...Ch. 14 - Prob. 14.85QPCh. 14 - Prob. 14.86QPCh. 14 - 14.87 In recent years ozone in the stratosphere...Ch. 14 - Prob. 14.88QPCh. 14 - Prob. 14.90QPCh. 14 - Prob. 14.91QPCh. 14 - Prob. 14.92QPCh. 14 - Prob. 14.93QPCh. 14 - Prob. 14.94QPCh. 14 - Prob. 14.95QPCh. 14 - Prob. 14.96QPCh. 14 - Prob. 14.97QPCh. 14 - Prob. 14.98QPCh. 14 - Prob. 14.100QPCh. 14 - Prob. 14.101QPCh. 14 -
14.102 Consider the potential energy profiles...Ch. 14 - Prob. 14.103QPCh. 14 - Prob. 14.104QPCh. 14 -
14.105 The activation energy for the...Ch. 14 - Prob. 14.106QPCh. 14 - Prob. 14.107SPCh. 14 - Prob. 14.108SPCh. 14 - Prob. 14.109SPCh. 14 - Prob. 14.110SPCh. 14 - Prob. 14.111SPCh. 14 - Prob. 14.112SPCh. 14 - Prob. 14.113SPCh. 14 - Prob. 14.114SPCh. 14 - Prob. 14.115SPCh. 14 - 14.116 To prevent brain damage, a drastic medical...Ch. 14 - Prob. 14.117SPCh. 14 - Prob. 14.118SP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Determine the structures of the missing organic molecules in the following reaction: X+H₂O H* H+ Y OH OH Note: Molecules that share the same letter have the exact same structure. In the drawing area below, draw the skeletal ("line") structures of the missing organic molecules X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Click and drag to start drawing a structure. X Sarrow_forwardPredict the major products of this organic reaction. If there aren't any products, because nothing will happen, check the box under the drawing area instead. No reaction. HO. O :☐ + G Na O.H Click and drag to start drawing a structure. XS xs H₂Oarrow_forwardWhat are the angles a and b in the actual molecule of which this is a Lewis structure? H H C H- a -H b H Note for advanced students: give the ideal angles, and don't worry about small differences from the ideal groups may have slightly different sizes. a = b = 0 °arrow_forward
- What are the angles a and b in the actual molecule of which this is a Lewis structure? :0: HCOH a Note for advanced students: give the ideal angles, and don't worry about small differences from the ideal that might be caused by the fact that different electron groups may have slightly different sizes. a = 0 b=0° Sarrow_forwardDetermine the structures of the missing organic molecules in the following reaction: + H₂O +H OH O OH +H OH X Note: Molecules that share the same letter have the exact same structure. In the drawing area below, draw the skeletal ("line") structure of the missing organic molecule X. Click and drag to start drawing a structure.arrow_forwardIdentify the missing organic reactant in the following reaction: x + x O OH H* + ☑- X H+ O O Х Note: This chemical equation only focuses on the important organic molecules in the reaction. Additional inorganic or small-molecule reactants or products (like H₂O) are not shown. In the drawing area below, draw the skeletal ("line") structure of the missing organic reactant X. Click and drag to start drawing a structure. Carrow_forward
- CH3O OH OH O hemiacetal O acetal O neither O 0 O hemiacetal acetal neither OH hemiacetal O acetal O neither CH2 O-CH2-CH3 CH3-C-OH O hemiacetal O acetal CH3-CH2-CH2-0-c-O-CH2-CH2-CH3 O neither HO-CH2 ? 000 Ar Barrow_forwardWhat would be the best choices for the missing reagents 1 and 3 in this synthesis? 1. PPh3 2 2. n-BuLi 3 Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. • Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Explanation Check Click and drag to start drawing a structure.arrow_forwardPredict the products of this organic reaction: NaBH3CN + NH2 ? H+ Click and drag to start drawing a structure. ×arrow_forward
- Predict the organic products that form in the reaction below: + OH +H H+ ➤ ☑ X - Y Note: You may assume you have an excess of either reactant if the reaction requires more than one of those molecules to form the products. In the drawing area below, draw the skeletal ("line") structures of the missing organic products X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Click and drag to start drawing a structure. Garrow_forwardPredict the organic products that form in the reaction below: OH H+ H+ + ☑ Y Note: You may assume you have an excess of either reactant if the reaction requires more than one of those molecules to form the products. In the drawing area below, draw the skeletal ("line") structures of the missing organic products X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Click and drag to start drawing a structure. ✓ marrow_forwardDetermine the structures of the missing organic molecules in the following reaction: + H₂O +H H+ Y Z ☑ ☑ Note: Molecules that share the same letter have the exact same structure. In the drawing area below, draw the skeletal ("line") structures of the missing organic molecules X, Y, and Z. You may draw the structures in any arrangement that you like, so long as they aren't touching. Molecule X shows up in multiple steps, but you only have to draw its structure once. Click and drag to start drawing a structure. AP +arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning

Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY