Show that the variation of atmospheric pressure with altitude is given by P = P 0 e − αy where α = ρ 0 g/P 0 , P 0 is atmospheric pressure at some reference level y = 0, and ρ 0 is the atmospheric density at this level. Assume the decrease in atmospheric pressure over an infinitesimal change in altitude (so that the density is approximately uniform over the infinitesimal change) can be expressed from Equation 14.4 as dP = − pg dy . Also assume the density of air is proportional to the pressure, which, as we will see in Chapter 18, is equivalent to assuming the temperature of the air is the same at all altitudes.
Show that the variation of atmospheric pressure with altitude is given by P = P 0 e − αy where α = ρ 0 g/P 0 , P 0 is atmospheric pressure at some reference level y = 0, and ρ 0 is the atmospheric density at this level. Assume the decrease in atmospheric pressure over an infinitesimal change in altitude (so that the density is approximately uniform over the infinitesimal change) can be expressed from Equation 14.4 as dP = − pg dy . Also assume the density of air is proportional to the pressure, which, as we will see in Chapter 18, is equivalent to assuming the temperature of the air is the same at all altitudes.
Solution Summary: The author explains that atmospheric pressure is a pressure exerted by the weight of the atmosphere.
Show that the variation of atmospheric pressure with altitude is given by P = P0e−αy where α = ρ0g/P0, P0 is atmospheric pressure at some reference level y = 0, and ρ0 is the atmospheric density at this level. Assume the decrease in atmospheric pressure over an infinitesimal change in altitude (so that the density is approximately uniform over the infinitesimal change) can be expressed from Equation 14.4 as dP = −pg dy. Also assume the density of air is proportional to the pressure, which, as we will see in Chapter 18, is equivalent to assuming the temperature of the air is the same at all altitudes.
You are standing a distance x = 1.75 m away from this mirror. The object you are looking at is y = 0.29 m from the mirror. The angle of incidence is θ = 30°. What is the exact distance from you to the image?
For each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank you
A planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.