![EBK PHYSICS FOR SCIENTISTS AND ENGINEER](https://www.bartleby.com/isbn_cover_images/8220100654428/8220100654428_largeCoverImage.jpg)
Concept explainers
(a)
The appropriate model to describe the system when balloon is stationary.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 14.60AP
The appropriate model to describe the system is particle in equilibrium.
Explanation of Solution
The mass of the balloon is
If a system remains stationary, the sum of all forces acted on a system in all direction vertical as well as horizontal is equal to zero. This condition is also called is equilibrium condition.
Conclusion:
Therefore, appropriate model to describe the system is particle in equilibrium.
(b)
The force equation for the balloon for this model.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 14.60AP
The force equation for the balloon for this model is
Explanation of Solution
In equilibrium condition, sum of all forces in vertical direction is equal to zero.
Here,
Conclusion:
Therefore, the force equation for the balloon for this model is
(c)
The mass of the string in terms of
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 14.60AP
The mass of the string in the terms of
Explanation of Solution
From equation (I),
The buoyant force act on the balloon is equal to the displaced volume of the air by the balloon.
Formula to calculate the buoyant force acting on the balloon is,
Here,
Formula to calculate the weight of the balloon is,
Here,
Formula to calculate the weight of the helium gas is,
Here,
Formula to calculate the weight of the string is,
Here,
Substitute
Formula to calculate the mass of the helium gas is,
Here,
Substitute
Rearrange the above expression for
Conclusion:
Therefore, the mass of the string in terms of
(d)
The mass of the string.
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 14.60AP
The mass of the string is
Explanation of Solution
From equation (II),
Substitute
Conclusion:
Therefore, the mass of the string is
(e)
The length
(e)
![Check Mark](/static/check-mark.png)
Answer to Problem 14.60AP
The length
Explanation of Solution
From equation (II),
The mass of the string of height
Substitute
Substitute
Conclusion:
Therefore, the length
Want to see more full solutions like this?
Chapter 14 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- Assume ax(u) is constant, then show thatarrow_forwardOne strain of bacteria was found to have a membrane potential of -120 mVmV at a pHpH of 7.5. A bacterium can be modeled as a 1.5-μmμm-diameter sphere. How many positive ions are needed on the exterior surface to establish this membrane potential? (There are an equal number of negative ions on the interior surface.) Assume that the membrane properties are the same as those of mammalian cells.arrow_forwardQ: Draw the fabrication layers of a transistor with metal and semiconductor MS junction (Schottkyj unction).arrow_forward
- 2. List three places besides in springs where Hooke's law applies.arrow_forward1. What is the spring constant of a spring that starts 10.0 cm long and extends to 11.4 cm with a 300 g mass hanging from it?arrow_forwardplease help me solve all parts of this question from physics. thanks so much in advance! :)))arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285737027/9781285737027_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)