AVC LOOSELEAF CHEMISTRY W/CONNECT 2 SEM
AVC LOOSELEAF CHEMISTRY W/CONNECT 2 SEM
13th Edition
ISBN: 9781260987164
Author: Chang
Publisher: MCG CUSTOM
bartleby

Videos

Textbook Question
Book Icon
Chapter 14, Problem 14.46QP

Consider the following equilibrium process at 686°C:

CO 2 ( g ) + H 2 ( g ) CO(g) + H 2 O( g )

The equilibrium concentrations of the reacting species are [CO] = 0.050 M, [H2] = 0.045 M, [CO2] = 0.086 M, and [H2O] = 0.040 M. (a) Calculate Kc for the reaction at 686°C. (b) If we add CO2 to increase its concentration to 0.50 mol/L, what will the concentrations of all the gases be when equilibrium is reestablished?

Expert Solution & Answer
Check Mark
Interpretation Introduction

Interpretation:

The equilibrium concentration (Kc) should be calculated to given the statement of equilibrium reaction at 686οC.

Concept Introduction:

Chemical equilibrium: The term applied to reversible chemical reactions. It is the point at which the rate of the forward reaction is equal to the rate of the reverse reaction. The equilibrium is achieved; the concentrations of reactant and products become constant.

Kp and Kc: This equilibrium constants of gaseous mixtures, these difference between the two constants is that Kc is defined by molar concentrations, whereas Kp is defined by the partial pressures of the gasses inside a closed system.

Equilibrium constant: Concentration of the products to the respective molar concentration of reactants it is called equilibrium constant. If the K value is less than one the reaction will move to the left side and the K values is higher (or) greater than one the reaction will move to the right side of reaction.

Heterogeneous equilibrium: This equilibrium reaction does not depend on the amounts of pure solid and liquid present, in other words heterogeneous equilibrium, substances are in different phases.

Explanation of Solution

To find: Calculate the (Kc) values for given the statement of equilibrium reaction (a).

Calculate and analyze the (Kc) values at 6860C.

The consider the following expression of (Kc)

CO2(g)+H2(g)CO2(g)+H2O(g)Kc=[H2O][CO2][CO2][H2][1]Thegivenstatemntofmolarvaluessubstitutedforaboveequation=(0.040)(0.050)(0.086)(0.045)=0.52

The simple equilibrium constant is derived showed above equation (1).

To find: Calculate the molar values for given the statement of equilibrium reaction (b).

Calculate and analyze the molar values at 6860C.

First we derived for reaction quotient (Qc) values for given equilibrium reaction.

CO2(g)+H2(g)CO2(g)+H2O(g)Qc=[H2O][CO2][CO2][H2]The concentartion of CO2 =0.50mol/LThis values are substitued for above (Kc) equlibrium reactionThegivenstatemntofmolarvaluessubstitutedforaboveequationQc=(0.040)(0.050)(0.50)(0.045)=0.089Qc=0.089

Calculate the molar concentration of the given equilibrium reaction.

CO2(g)+H2(g)CO(g)H2O(g)Initial (M): 0.500.0450.0500.040Change (M):   xx+x+xEqilibrium (M):(0.50x)(0.045x)(0.050+x)(0.040+x)Theequlibriumconstant(Kc)followedbyKc=[H2O][CO][H2][CO2]=[Product][Reactant][1]Calculatetheequlibriumvalueof(Kc)Given the respactive molar values Kc=[H2O][CO][H2][CO2]=(0.040+x)(0.050+x)(0.50x)(0.045x)=0.52[2]Rewrite the equation (2)0.52 (x2-0.545x+0.0225)=x2+(0.090x+0.0020)0.48x2+0.373x(9.7×103)=0Herex=(0.853)(9.7×103)x=0.025The equlibrium concentration areReactant [CO2]=(0.50-0.025)M=0.48M[H2]=(0.045-0.025)M=0.020MProduct[CO]=(0.050+0.025)M=0.075M[H2O]=(0.040+0.025)M=0.065M

The given equilibrium process, the equal moles of H2 and CO2 reacted with in gas phase conditions to give a H2O and CO molecule, the reactant moles 0.50m/L. Then the number of moles calculating (Kc) molar concentration of reacting procedure as fallows, first construct an above equilibrium table and fill in the initial concentration and zero also include the respective table than we use the initial concentration to calculate the reaction quotient (Qr) and compare (K) values to identified the direction in which the reaction will proceeds. Further calculate (x) as the amount of particular species consumed and use the stoichiometry of the reaction to define in terms of (x) the amount of the species produced. Finally the each species in the equilibrium add the change in concentration to the initial concentration to get the equilibrium concentration. The derived molar concentration values are showed above.

Conclusion

The product molecule molar concentration is derived given the equilibrium concentration (Kc) and respective equilibrium reaction at 686οC.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
" is The structure of the bicarbonate (hydrogen carbonate) ion, HCO3-, HCO3 best described as a hybrid of several contributing resonance forms, two of which are shown here. HO :0: :Ö: HO + Bicarbonate is crucial for the control of body pH (for example, blood pH: 7.4). A more self-indulgent use is in baking soda, where it serves as a source of CO2 CO₂ 2 gas, which gives bread and pastry their fluffy constituency. (i) Draw at least one additional resonance form. = (ii) Using curved "electron-pushing" arrows, show how these Lewis structures may be interconverted by movement of electron pairs. (iii) Determine which form or forms will be the major contributor(s) to the real structure of bicarbonate, explaining your answer on the basis of the criteria in Section 1-5.
Which of these is the best use of a volumetric flask? measuring how much liquid it contains delivering a precise amount of liquid to another container holding solutions making solutions of precise concentration
You're competing on a Great British television game show, and you need to bake a cake. The quantity for each ingredient is given in grams, but you haven't been given a kitchen scale. Which of these properties would correlate with the mass of a baking ingredient like eggs or milk? Check all that apply. depth of color viscosity volume density

Chapter 14 Solutions

AVC LOOSELEAF CHEMISTRY W/CONNECT 2 SEM

Ch. 14.2 - From the following equilibrium constant...Ch. 14.2 - Write the equilibrium constant expression for the...Ch. 14.3 - The equilibrium constant (Kc) for reaction AB+C is...Ch. 14.4 - The equilibrium constant (Kc) for the formation of...Ch. 14.4 - Consider the reaction in Example 14.9. Starting...Ch. 14.4 - At 1280C the equilibrium constant (Kc) for the...Ch. 14.4 - Use the following information to answer questions...Ch. 14.4 - Use the following information to answer questions...Ch. 14.4 - The equilibrium constant (Kc) for the A2+B22AB...Ch. 14.5 - At 430C, the equilibrium constant (KP) for the...Ch. 14.5 - Consider the equilibrium reaction involving...Ch. 14.5 - Consider the equilibrium between molecular oxygen...Ch. 14.5 - Prob. 1RCFCh. 14.5 - The diagram here shows the gaseous reaction 2AA2...Ch. 14.5 - The diagrams shown here represent the reaction...Ch. 14 - Define equilibrium. Give two examples of a dynamic...Ch. 14 - Explain the difference between physical...Ch. 14 - What is the law of mass action?Ch. 14 - Briefly describe the importance of equilibrium in...Ch. 14 - Define homogeneous equilibrium and heterogeneous...Ch. 14 - Prob. 14.6QPCh. 14 - Write the expressions for the equilibrium...Ch. 14 - Write equilibrium constant expressions for Kc, and...Ch. 14 - Write the equilibrium constant expressions for Kc...Ch. 14 - Write the equation relating Kc to KP, and define...Ch. 14 - What is the rule for writing the equilibrium...Ch. 14 - Give an example of a multiple equilibria reaction.Ch. 14 - Problems 14.13The equilibrium constant for the...Ch. 14 - The following diagrams represent the equilibrium...Ch. 14 - The equilibrium constant (Kc) for the reaction...Ch. 14 - Consider the following equilibrium process at...Ch. 14 - What is KP at 1273C for the reaction...Ch. 14 - The equilibrium constant KP for the reaction...Ch. 14 - Consider the following reaction: N2(g)+O2(g)2NO(g)...Ch. 14 - A reaction vessel contains NH3, N2, and H2 at...Ch. 14 - The equilibrium constant Kc for the reaction...Ch. 14 - At equilibrium, the pressure of the reacting...Ch. 14 - The equilibrium constant KP for the reaction...Ch. 14 - Ammonium carbamate, NH4CO2NH2, decomposes as...Ch. 14 - Consider the following reaction at 1600C....Ch. 14 - Pure phosgene gas (COCl2), 3.00 102 mol, was...Ch. 14 - Consider the equilibrium 2NOBr(g)2NO(g)+Br2(g) If...Ch. 14 - A 2.50-mole quantity of NOCl was initially in a...Ch. 14 - The following equilibrium constants have been...Ch. 14 - The following equilibrium constants have been...Ch. 14 - The following equilibrium constants were...Ch. 14 - At a certain temperature the following reactions...Ch. 14 - Based on rate constant considerations, explain why...Ch. 14 - Explain why reactions with large equilibrium...Ch. 14 - Water is a very weak electrolyte that undergoes...Ch. 14 - Consider the following reaction, which takes place...Ch. 14 - Define reaction quotient. How does it differ from...Ch. 14 - Prob. 14.38QPCh. 14 - The equilibrium constant KP for the reaction...Ch. 14 - For the synthesis of ammonia N2(g)+2H2(g)2NH3(g)...Ch. 14 - For the reaction H2(g)+CO2(g)H2O(g)+CO(g) at 700C,...Ch. 14 - At 1000 K, a sample of pure NO2 gas decomposes:...Ch. 14 - The equilibrium constant Kc for the reaction...Ch. 14 - The dissociation of molecular iodine into iodine...Ch. 14 - The equilibrium constant Kc for the decomposition...Ch. 14 - Consider the following equilibrium process at...Ch. 14 - Consider the heterogeneous equilibrium process:...Ch. 14 - The equilibrium constant Kc for the reaction...Ch. 14 - Explain Le Chteliers principle. How can this...Ch. 14 - Use Le Chteliers principle to explain why the...Ch. 14 - List four factors that can shift the position of...Ch. 14 - Does the addition of a catalyst have any effects...Ch. 14 - Consider the following equilibrium system...Ch. 14 - Heating solid sodium bicarbonate in a closed...Ch. 14 - Consider the following equilibrium systems: (a)...Ch. 14 - Consider the equilibrium 2I(g)2I2(g) What would be...Ch. 14 - Consider the following equilibrium process:...Ch. 14 - Consider the reaction...Ch. 14 - In the uncatalyzed reaction N2O4(g)2NO2(g) the...Ch. 14 - Consider the gas-phase reaction...Ch. 14 - Consider the statement: The equilibrium constant...Ch. 14 - Pure nitrosyl chloride (NOCl) gas was heated to...Ch. 14 - Determine the initial and equilibrium...Ch. 14 - Diagram (a) shows the reaction A2(g)+B2(g)2AB(g)...Ch. 14 - The equilibrium constant (KP) for the formation of...Ch. 14 - Baking soda (sodium bicarbonate) undergoes thermal...Ch. 14 - Consider the following reaction at equilibrium:...Ch. 14 - The equilibrium constant KP for the reaction...Ch. 14 - Consider the following reacting system:...Ch. 14 - At a certain temperature and a total pressure of...Ch. 14 - Consider the reaction 2NO(g)+O2(g)2NO2(g) At 430C,...Ch. 14 - When heated, ammonium carbamate decomposes as...Ch. 14 - A mixture of 0.47 mole of H2 and 3.59 moles of HCl...Ch. 14 - When heated at high temperatures, iodine vapor...Ch. 14 - One mole of N2 and three moles of H2 are placed in...Ch. 14 - Prob. 14.79QPCh. 14 - A quantity of 6.75 g of SO2Cl2 was placed in a...Ch. 14 - Prob. 14.81QPCh. 14 - Prob. 14.82QPCh. 14 - Eggshells are composed mostly of calcium carbonate...Ch. 14 - The equilibrium constant KP for the following...Ch. 14 - When dissolved in water, glucose (corn sugar) and...Ch. 14 - At room temperature, solid iodine is in...Ch. 14 - Prob. 14.89QPCh. 14 - The equilibrium constant Kc for the reaction...Ch. 14 - When heated, a gaseous compound A dissociates as...Ch. 14 - When a gas was heated under atmospheric...Ch. 14 - Prob. 14.93QPCh. 14 - At 20C, the vapor pressure of water is 0.0231 atm....Ch. 14 - Industrially, sodium metal is obtained by...Ch. 14 - In the gas phase, nitrogen dioxide is actually a...Ch. 14 - Prob. 14.99QPCh. 14 - The equilibrium constant for the reaction 4X+Y3Z...Ch. 14 - About 75 percent of hydrogen for industrial use is...Ch. 14 - Prob. 14.102QPCh. 14 - Consider the decomposition of ammonium chloride at...Ch. 14 - At 25C, the equilibrium partial pressures of NO2...Ch. 14 - Prob. 14.105QPCh. 14 - Prob. 14.107QPCh. 14 - Prob. 14.108QPCh. 14 - At 25C, a mixture of NO2 and N2O4 gases are in...Ch. 14 - A student placed a few ice cubes in a drinking...Ch. 14 - Consider the potential energy diagrams for two...Ch. 14 - The equilibrium constant Kc for the reaction...Ch. 14 - Prob. 14.113QPCh. 14 - The equilibrium constant (KP) for the reaction...Ch. 14 - The forward and reverse rate constants for the...Ch. 14 - Consider the reaction between NO2 and N2O4 in a...Ch. 14 - Prob. 14.118QPCh. 14 - (a) Use the vant Hoff equation in Problem 14.118...Ch. 14 - The KP for the reaction SO2Cl2(g)SO2(g)+Cl2(g) is...Ch. 14 - Prob. 14.121QPCh. 14 - Consider the following equilibrium system:...Ch. 14 - Prob. 14.125QPCh. 14 - Estimate the vapor pressure of water at 60C (see...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    General Chemistry - Standalone book (MindTap Cour...
    Chemistry
    ISBN:9781305580343
    Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
    Publisher:Cengage Learning
    Text book image
    Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
  • Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry: Principles and Practice
    Chemistry
    ISBN:9780534420123
    Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
    Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY