Chemistry [hardcover]
Chemistry [hardcover]
5th Edition
ISBN: 9780393264845
Author: Geoffery Davies
Publisher: NORTON
bartleby

Videos

Question
Book Icon
Chapter 14, Problem 14.42QP

(a)

Interpretation Introduction

Interpretation: The equilibrium constant Kc for the given reaction at a given temperature is 5×1012 . On the basis of this information given questions are to be answered.

Concept introduction: The equilibrium constant (Kc) is expressed as,

Kc=[C]c[D]d[A]a[B]b

To determine: The equilibrium constant (Kc2) for the given reaction at same temperature.

(a)

Expert Solution
Check Mark

Answer to Problem 14.42QP

Solution

The equilibrium constant (Kc2) for the given reaction at same temperature is 2.23×106_ .

Explanation of Solution

Explanation

The given reactions are,

2NO(g)+O2(g)2NO2(g)NO(g)+12O2(g)NO2(g)

The equilibrium constant Kc1 for the first above reaction and at constant temperature is 5×1012 .

For a simple reaction,

aA+bBcC+dD

The equilibrium constant (Kc) is expressed as,

Kc=[C]c[D]d[A]a[B]b

Where,

  • [C] is the molar concentration of C .
  • [D] is the molar concentration of D .
  • [B] is the molar concentration of B .
  • [A] is the molar concentration of A .
  • c is the molar coefficient of C .
  • d is the molar coefficient of D .
  • b is the molar coefficient of B .
  • a is the molar coefficient of A .

The expression for the equilibrium constant of first (Kc1) given reaction is,

Kc1=[NO2(g)]2[NO(g)]2[O2(g)]1 (1)

The expression for the equilibrium constant of second (Kc2) given reaction is,

Kc2=[NO2(g)]1[NO(g)]1[O2(g)]12 (2)

Where,

  • [NO(g)] is the molar concentration of NO(g) .
  • [NO2(g)] is the molar concentration of NO2(g) .
  • [O2(g)] is the molar concentration of O2(g) .

Divide equation (1) with (2).

Kc1Kc2=[NO2(g)]2[NO(g)]2[O2(g)]1[NO2(g)]1[NO(g)]1[O2(g)]12Kc1Kc2=[NO2(g)]2[NO(g)]2[O2(g)]1×[NO(g)]1[O2(g)]12[NO2(g)]1Kc1Kc2=[NO2(g)]21[NO(g)]21[O2(g)]112Kc1Kc2=[NO2(g)]1[NO(g)]1[O2(g)]12 (3)

Compare equation (3) with (2).

Kc1Kc2=Kc2(Kc2)2=Kc1Kc2=Kc1 (4)

Substitute the value of Kc1 in equation (4).

Kc2=5×1012=2.23×106

Thus, the equilibrium constant (Kc2) for the given reaction at same temperature is 2.23×106_ .

(b)

Interpretation Introduction

To determine: The equilibrium constant (Kc2') for the given reaction at same temperature.

(b)

Expert Solution
Check Mark

Answer to Problem 14.42QP

Solution

The equilibrium constant (Kc2') of the given reaction at same temperature is 2.0×10-13_ .

Explanation of Solution

Explanation

The given reactions are,

2NO(g)+O2(g)2NO2(g)NO(g)+12O2(g)NO2(g)

The equilibrium constant Kc1 for the first above reaction and at constant temperature is 5×1012 .

For a simple reaction,

aA+bBcC+dD

The equilibrium constant (Kc) is expressed as,

Kc=[C]c[D]d[A]a[B]b

Where,

  • [C] is the molar concentration of C .
  • [D] is the molar concentration of D .
  • [B] is the molar concentration of B .
  • [A] is the molar concentration of A .
  • c is the molar coefficient of C .
  • d is the molar coefficient of D .
  • b is the molar coefficient of B .
  • a is the molar coefficient of A .

The expression for the equilibrium constant of second (Kc2') given reaction is,

Kc2'=[NO(g)]2[O2(g)][NO3(g)]2 (5)

Where,

  • [NO(g)] is the molar concentration of NO(g) .
  • [NO2(g)] is the molar concentration of NO2(g) .
  • [O2(g)] is the molar concentration of O2(g) .

Multiply equation (1) with (5).

Kc1×Kc2'=[NO2(g)]2[NO(g)]2[O2(g)]1×[NO(g)]2[O2(g)][NO3(g)]2Kc1×Kc2'=1Kc2'=1Kc1 (6)

Substitute the value of Kc1 in equation (6).

Kc2'=15×1012Kc2'=2.0×1013

Thus, the equilibrium constant (Kc2') for the given reaction at same temperature is 2.0×10-13_ .

(c)

Interpretation Introduction

To determine: The equilibrium constant (Kc2'') for the given reaction at same temperature.

(c)

Expert Solution
Check Mark

Answer to Problem 14.42QP

Solution

The equilibrium constant (Kc2'') for the given reaction at same temperature is 4.4×10-7_ .

Explanation of Solution

Explanation

The given reactions are,

2NO(g)+O2(g)2NO2(g)NO(g)+12O2(g)NO2(g)

The equilibrium constant Kc1 for the first above reaction and at constant temperature is 5×1012 .

For a simple reaction,

aA+bBcC+dD

The equilibrium constant (Kc) is expressed as,

Kc=[C]c[D]d[A]a[B]b

Where,

  • [C] is the molar concentration of C .
  • [D] is the molar concentration of D .
  • [B] is the molar concentration of B .
  • [A] is the molar concentration of A .
  • c is the molar coefficient of C .
  • d is the molar coefficient of D .
  • b is the molar coefficient of B .
  • a is the molar coefficient of A .

The expression for the equilibrium constant of second (Kc2'') given reaction is,

Kc2''=[NO(g)]1[O2(g)]12[NO2(g)]1 (7)

Where,

  • [NO(g)] is the molar concentration of NO(g) .
  • [NO2(g)] is the molar concentration of NO2(g) .
  • [O2(g)] is the molar concentration of O2(g) .

Multiply equation (1) with (7).

Kc1×Kc2''=[NO2(g)]2[NO(g)]2[O2(g)]1×[NO(g)]1[O2(g)]12[NO2(g)]1Kc1×Kc2''=[NO2(g)]21[NO(g)]21[O2(g)]112Kc1×Kc2''=[NO2(g)]1[NO(g)]1[O2(g)]12 (8)

Compare equation (8) with (7).

Kc1×Kc2''=1Kc2(Kc2'')2=1Kc1Kc2''=1Kc1 (9)

Substitute the value of Kc1 in equation (9).

Kc2''=15×1012=0.2×1012=4.4×107

Thus, the equilibrium constant (Kc2'') for the given reaction at same temperature is 4.4×10-7_ .

Conclusion

  1. a. The equilibrium constant (Kc2) for the given reaction at same temperature is 2.23×106_ .
  2. b. The equilibrium constant (Kc2') of the given reaction at same temperature is 2.0×10-13_ .
  3. c. The equilibrium constant (Kc2'') for the given reaction at same temperature is 4.4×10-7_ .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Interpreting NMR spectra is a skill that often requires some amount of practice, which, in turn, necessitates access to a collection of NMR spectra. Beyond Labz Organic Synthesis and Organic Qualitative Analysis have spectral libraries containing over 700 1H NMR spectra. In this assignment, you will take advantage of this by first predicting the NMR spectra for two closely related compounds and then checking your predictions by looking up the actual spectra in the spectra library. After completing this assignment, you may wish to select other compounds for additional practice. 1. Write the IUPAC names for the following two structures: Question 2 Question 3 2. Predict the NMR spectra for each of these two compounds by listing, in the NMR tables below, the chemical shift, the splitting, and the number of hydrogens associated with each predicted peak. Sort the peaks from largest chemical shift to lowest. **Not all slots must be filled**
11:14 ... worksheets.beyondlabz.com 3. To check your predictions, click this link for Interpreting NMR Spectra 1. You will see a list of all the - compounds in the spectra library in alphabetical order by IUPAC name. Hovering over a name in the list will show the structure on the chalkboard. The four buttons on the top of the Spectra tab in the tray are used to select the different spectroscopic techniques for the selected compound. Make sure the NMR button has been selected. 4. Scroll through the list of names to find the names for the two compounds you have been given and click on the name to display the NMR spectrum for each. In the NMR tables below, list the chemical shift, the splitting, and the number of hydrogens associated with each peak for each compound. Compare your answers to your predictions. **Not all slots must be filled** Peak Chemical Shift (d) Multiplicity 1 2 3 4 5
О δα HO- H -Br δα HO-- + + -Br [B] 8+ HO- -Br δα न

Chapter 14 Solutions

Chemistry [hardcover]

Ch. 14.7 - Prob. 11PECh. 14.7 - Prob. 12PECh. 14.8 - Prob. 13PECh. 14 - Prob. 14.1VPCh. 14 - Prob. 14.2VPCh. 14 - Prob. 14.3VPCh. 14 - Prob. 14.4VPCh. 14 - Prob. 14.5VPCh. 14 - Prob. 14.6VPCh. 14 - Prob. 14.7QPCh. 14 - Prob. 14.8QPCh. 14 - Prob. 14.9QPCh. 14 - Prob. 14.10QPCh. 14 - Prob. 14.11QPCh. 14 - Prob. 14.12QPCh. 14 - Prob. 14.13QPCh. 14 - Prob. 14.14QPCh. 14 - Prob. 14.15QPCh. 14 - Prob. 14.16QPCh. 14 - Prob. 14.17QPCh. 14 - Prob. 14.18QPCh. 14 - Prob. 14.19QPCh. 14 - Prob. 14.20QPCh. 14 - Prob. 14.21QPCh. 14 - Prob. 14.22QPCh. 14 - Prob. 14.23QPCh. 14 - Prob. 14.24QPCh. 14 - Prob. 14.25QPCh. 14 - Prob. 14.26QPCh. 14 - Prob. 14.27QPCh. 14 - Prob. 14.28QPCh. 14 - Prob. 14.29QPCh. 14 - Prob. 14.30QPCh. 14 - Prob. 14.31QPCh. 14 - Prob. 14.32QPCh. 14 - Prob. 14.33QPCh. 14 - Prob. 14.34QPCh. 14 - Prob. 14.35QPCh. 14 - Prob. 14.36QPCh. 14 - Prob. 14.37QPCh. 14 - Prob. 14.38QPCh. 14 - Prob. 14.39QPCh. 14 - Prob. 14.40QPCh. 14 - Prob. 14.41QPCh. 14 - Prob. 14.42QPCh. 14 - Prob. 14.43QPCh. 14 - Prob. 14.44QPCh. 14 - Prob. 14.45QPCh. 14 - Prob. 14.46QPCh. 14 - Prob. 14.47QPCh. 14 - Prob. 14.48QPCh. 14 - Prob. 14.49QPCh. 14 - Prob. 14.50QPCh. 14 - Prob. 14.51QPCh. 14 - Prob. 14.52QPCh. 14 - Prob. 14.53QPCh. 14 - Prob. 14.54QPCh. 14 - Prob. 14.55QPCh. 14 - Prob. 14.56QPCh. 14 - Prob. 14.57QPCh. 14 - Prob. 14.58QPCh. 14 - Prob. 14.59QPCh. 14 - Prob. 14.60QPCh. 14 - Prob. 14.61QPCh. 14 - Prob. 14.62QPCh. 14 - Prob. 14.63QPCh. 14 - Prob. 14.64QPCh. 14 - Prob. 14.65QPCh. 14 - Prob. 14.66QPCh. 14 - Prob. 14.67QPCh. 14 - Prob. 14.68QPCh. 14 - Prob. 14.69QPCh. 14 - Prob. 14.70QPCh. 14 - Prob. 14.71QPCh. 14 - Prob. 14.72QPCh. 14 - Prob. 14.73QPCh. 14 - Prob. 14.74QPCh. 14 - Prob. 14.75QPCh. 14 - Prob. 14.76QPCh. 14 - Prob. 14.77QPCh. 14 - Prob. 14.78QPCh. 14 - Prob. 14.79QPCh. 14 - Prob. 14.80QPCh. 14 - Prob. 14.81QPCh. 14 - Prob. 14.82QPCh. 14 - Prob. 14.83QPCh. 14 - Prob. 14.84QPCh. 14 - Prob. 14.85QPCh. 14 - Prob. 14.86QPCh. 14 - Prob. 14.87QPCh. 14 - Prob. 14.88QPCh. 14 - Prob. 14.89QPCh. 14 - Prob. 14.90QPCh. 14 - Prob. 14.91QPCh. 14 - Prob. 14.92QPCh. 14 - Prob. 14.93APCh. 14 - Prob. 14.94APCh. 14 - Prob. 14.95APCh. 14 - Prob. 14.96APCh. 14 - Prob. 14.97APCh. 14 - Prob. 14.98APCh. 14 - Prob. 14.99AP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY