Concept explainers
Interpretation: To determine the binding energy of 1 mole of
Concept introduction: Mass defect:
The nucleus of each atom (aside from
Mass and energy are related by following equation.
E = Energy
M = mass
C =
Loss of mass and liberation of energy are related by Einstein’s equations.
Answer to Problem 14.39PAE
Solution: The binding energy of 1 mole of
Explanation of Solution
Given information: The experimentally determined mass of
Formula used:
Calculation: To calculate the binding energy of
Let’s calculate the mass which is equal to the sum of masses of six protons and eight neutrons.
Let’s calculate the mass defect:
Here, the mass defect formula is the difference between the calculated and observed masses of carbon -14 nuclei.
Mass defect can be calculated by the following formula.
Substitute the values in the above equation.
Let’s calculate the binding energy:
Here, we have to convert the mass defect from atomic mass units to kilograms.
Then the resulting value for
Let’s calculate the released energy from the one mole of
Therefore, the binding energy of 1 mole of
Want to see more full solutions like this?
Chapter 14 Solutions
Chemistry for Engineering Students
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning