Concept explainers
(a)
Interpretation: The different types of protons present in given compound are to be predicted.
Concept introduction: Spectroscopy method is used to identify the structure of the molecule. It is based on the interactions between matter and
Answer to Problem 14.36P
In the given compound, two different types of protons are present.
Explanation of Solution
In the given compound, one carbon atom is bonded to three other carbon atoms on which three hydrogen atoms are present. The central carbon atom will give multiplet whereas the other three carbon atoms will give doublet in NMR spectroscopy. The splitting of peaks takes place according to
In the given compound, two different types of protons are present.
(b)
Interpretation: The different types of protons present in given compound are to be predicted.
Concept introduction: Spectroscopy method is used to identify the structure of the molecule. It is based on the interactions between matter and electromagnetic radiations. Proton NMR spectroscopy identifies the number of hydrogen atoms present in a molecule and the nature of the functional group. The value of chemical peaks depends upon the chemical environment around the hydrogen atom.
Answer to Problem 14.36P
In the given compound, seven different types of protons are present.
Explanation of Solution
The given compound contains seven different types of protons each labeled as
Figure 1
Each proton will give different chemical shift value in NMR spectroscopy.
In the given compound, seven different types of protons are present.
(c)
Interpretation: The different types of protons present in given compound are to be predicted.
Concept introduction: Spectroscopy method is used to identify the structure of the molecule. It is based on the interactions between matter and electromagnetic radiations. Proton NMR spectroscopy identifies the number of hydrogen atoms present in a molecule and the nature of the functional group. The value of chemical peaks depends upon the chemical environment around the hydrogen atom.
Answer to Problem 14.36P
In the given compound, five different types of protons are present.
Explanation of Solution
The given compound contains five different types of protons each labeled as
Figure 2
Each proton will give different chemical shift value in NMR spectroscopy.
In the given compound, five different types of protons are present.
(d)
Interpretation: The different types of protons present in given compound are to be predicted.
Concept introduction: Spectroscopy method is used to identify the structure of the molecule. It is based on the interactions between matter and electromagnetic radiations. Proton NMR spectroscopy identifies the number of hydrogen atoms present in a molecule and the nature of the functional group. The value of chemical peaks depends upon the chemical environment around the hydrogen atom.
Answer to Problem 14.36P
In the given compound, three different types of protons are present.
Explanation of Solution
The given compound contains three different types of protons each labeled as
Figure 3
Each proton will give different chemical shift value in NMR spectroscopy.
In the given compound, three different types of protons are present.
(e)
Interpretation: The different types of protons present in given compound are to be predicted.
Concept introduction: Spectroscopy method is used to identify the structure of the molecule. It is based on the interactions between matter and electromagnetic radiations. Proton NMR spectroscopy identifies the number of hydrogen atoms present in a molecule and the nature of the functional group. The value of chemical peaks depends upon the chemical environment around the hydrogen atom.
Answer to Problem 14.36P
In the given compound three different types of protons are present.
Explanation of Solution
The given compound contains three different types of protons each labeled as
Figure 4
Each proton will give different chemical shift value in NMR spectroscopy.
In the given compound, three different types of protons are present.
(f)
Interpretation: The different types of protons present in given compound are to be predicted.
Concept introduction: Spectroscopy method is used to identify the structure of the molecule. It is based on the interactions between matter and electromagnetic radiations. Proton NMR spectroscopy identifies the number of hydrogen atoms present in a molecule and the nature of the functional group. The value of chemical peaks depends upon the chemical environment around the hydrogen atom.
Answer to Problem 14.36P
In the given compound four different types of protons are present.
Explanation of Solution
The given compound contains four different types of protons each labeled as
Figure 5
Each proton will give different chemical shift value in NMR spectroscopy.
In the given compound four different types of protons are present.
(g)
Interpretation: The different types of protons present in given compound are to be predicted.
Concept introduction: Spectroscopy method is used to identify the structure of the molecule. It is based on the interactions between matter and electromagnetic radiations. Proton NMR spectroscopy identifies the number of hydrogen atoms present in a molecule and the nature of the functional group. The value of chemical peaks depends upon the chemical environment around the hydrogen atom.
Answer to Problem 14.36P
In the given compound, six different types of protons are present.
Explanation of Solution
In the given compound, a chiral carbon atom is bonded to another carbon atom on which two protons and an methyl group is present. Hence, these protons are termed as diasterotropic protons. Each diasterotropic protons gives different chemical shift value.
Therefore, the given compound contains six different types of protons each labeled as
Figure 6
Each proton will give different chemical shift value in NMR spectroscopy.
In the given compound, six different types of protons are present.
(h)
Interpretation: The different types of protons present in given compound are to be predicted.
Concept introduction: Spectroscopy method is used to identify the structure of the molecule. It is based on the interactions between matter and electromagnetic radiations. Proton NMR spectroscopy identifies the number of hydrogen atoms present in a molecule and the nature of the functional group. The value of chemical peaks depends upon the chemical environment around the hydrogen atom.
Answer to Problem 14.36P
In the given compound four different types of protons are present.
Explanation of Solution
The given compound contains four different types of protons each labeled as
Figure 7
Each proton will give different chemical shift value in NMR spectroscopy.
In the given compound four different types of protons are present.
(i)
Interpretation: The different types of protons present in given compound are to be predicted.
Concept introduction: Spectroscopy method is used to identify the structure of the molecule. It is based on the interactions between matter and electromagnetic radiations. Proton NMR spectroscopy identifies the number of hydrogen atoms present in a molecule and the nature of the functional group. The value of chemical peaks depends upon the chemical environment around the hydrogen atom.
Answer to Problem 14.36P
In the given compound, three different types of protons are present.
Explanation of Solution
The given compound contains three different types of protons each labeled as
Figure 8
Each proton will give different chemical shift value in NMR spectroscopy.
In the given compound, three different types of protons are present.
(j)
Interpretation: The different types of protons present in given compound are to be predicted.
Concept introduction: Spectroscopy method is used to identify the structure of the molecule. It is based on the interactions between matter and electromagnetic radiations. Proton NMR spectroscopy identifies the number of hydrogen atoms present in a molecule and the nature of the functional group. The value of chemical peaks depends upon the chemical environment around the hydrogen atom.
Answer to Problem 14.36P
In the given compound four different types of protons are present.
Explanation of Solution
In the given compound, diastereotropic protons are present on two carbon atoms. However, due to symmetry of the molecule, one peak is observed.
Therefore, the given compound contains four different types of protons each labeled as
Figure 9
Each proton will give different chemical shift value in NMR spectroscopy.
In the given compound four different types of protons are present.
Want to see more full solutions like this?
Chapter 14 Solutions
PKG ORGANIC CHEMISTRY
- Don't used hand raitingarrow_forwardGramicidin A can adopt more than one structure; NMR spectroscopy has revealed an “end-to-end” dimer form, and x-ray crystallography has revealed an “anti-parallel double- helical” form. Briefly outline and describe an experimentalapproach/strategy to investigate WHICH configuration (“end-to-end dimer” vs “anti-paralleldouble helical”) gramicidin adopts in an actual lipid bilayer.arrow_forwardDon't used hand raitingarrow_forward
- CHEM2323 Problem 2-24 Tt O e: ל Predict the product(s) of the following acid/base reactions. Draw curved arrows to show the formation and breaking of bonds. If the bonds needed are not drawn out, you should redraw them. + BF3 (a) (b) HI + (c) OH -BF Problem 2-25 Use curved arrows and a proton (H+) to draw the protonated form of the following Lewis bases. Before starting, add all missing lone pairs. (a) (b) :0: (c) N 1 CHEM2323 PS CH02 Name:arrow_forwardCHEM2323 Problem 2-26 Tt O PS CH02 Name: Use the curved-arrow formalism to show how the electrons flow in the resonance form on the left to give the one on the right. (Draw all lone pairs first) (a) NH2 NH2 + (b) Problem 2-27 Double bonds can also act like Lewis bases, sharing their electrons with Lewis acids. Use curved arrows to show how each of the following double bonds will react with H-Cl and draw the resulting carbocation. (a) H2C=CH2 (b) (c) Problem 2-28 Identify the most electronegative element in each of the following molecules: (a) CH2FCI F Problem 2-29 (b) FCH2CH2CH2Br (c) HOCH2CH2NH2 (d) CH3OCH2Li F 0 0 Use the electronegativity table in Figure 2.3 to predict which bond in the following pairs is more polar and indicate the direction of bond polarity for each compound. (a) H3C-Cl or Cl-CI (b) H3C-H or H-CI (c) HO-CH3 or (CH3)3Si-CH3 (d) H3C-Li or Li-OHarrow_forwardDon't used hand raitingarrow_forward
- Don't used hand raitingarrow_forwardat 32.0 °C? What is the osmotic pressure (in atm) of a 1.46 M aqueous solution of urea [(NH2), CO] at 3 Round your answer to 3 significant digits.arrow_forwardReagan is doing an atomic absorption experiment that requires a set of zinc standards in the 0.4-1.6 ppm range. A 1000 ppm Zn solution was prepared by dissolving the necessary amount of solid Zn(NO3)2 in water. The standards can be prepared by diluting the 1000 ppm Zn solution. Table 1 shows one possible set of serial dilutions (stepwise dilution of a solution) that Reagan could perform to make the necessary standards. Solution A was prepared by diluting 5.00 ml of the 1000 ppm Zn standard to 50.00 ml. Solutions C-E are called "calibration standards" because they will be used to calibrate the atomic absorption spectrometer. a. Compare the solution concentrations expressed as ppm Zn and ppm Zn(NO3)2. Compare the concentrations expressed as M Zn and M Zn(NO3)2 - Which units allow easy conversion between chemical species (e.g. Zn and Zn(NO3)2)? - Which units express concentrations in numbers with easily expressed magnitudes? - Suppose you have an analyte for which you don't know the molar…arrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning