Chemistry Principles And Practice
Chemistry Principles And Practice
3rd Edition
ISBN: 9781305295803
Author: David Reger; Scott Ball; Daniel Goode
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 14, Problem 14.30QE
Interpretation Introduction

Interpretation:

The reaction quotient (Q) and direction of the following reaction has to be determined. Also, the number line for Q and Kc has to be drawn.

  2SO2(g)+O2(g)2SO3(g)

Concept Introduction:

The condition of equilibrium is a state of balance of processes that runs in opposite directions. At equilibrium, the formation of a product from the reactant balances the formation of reactant from the product. Also, the change in concentration of reaction and product seems to be negligible at equilibrium state.

A reaction quotient Q is an algebraic form of equilibrium constant (Keq) for all concentrations including reaction concentrations at equilibrium. The reaction quotient Q can also help in prediction of direction of reaction when compared with the equilibrium constant (Keq).

The general equilibrium reaction is as follows:

  aA+bBcC+dD

Here,

A and B are the reactants.

C and D are products.

a and b are the stoichiometric coefficients of reactants.

c and d are the stoichiometric coefficients of products.

The expression of the reaction quotient for the above reaction is as follows:

  Q=[C]c[D]d[A]a[B]b

Here,

Kc is the equilibrium constant.

[C] is the concentration of C.

[D] is the concentration of D.

[A] is the concentration of A.

[B] is the concentration of B.

The concentration of reactants and product changes in order to bring reaction quotient and equilibrium constant closer. Therefore, the direction of reaction can be predicted as follows:

(1) If Q is less than Keq then the reaction moves to increase the concentration of products, which means reaction moves towards right direction.

(2)If Q is greater than Keq then the reaction moves to decrease the concentration of products, that means reaction moves towards the left direction.

(3)If Q is equal to Keq then the reaction is in equilibrium.

Blurred answer
Students have asked these similar questions
(a) The following synthesis of the molecule shown in the circle has a major problem. What is this problem? (2 pts) 1) HBr (no peroxides) 2) H- NaNH2 Br 3) NaNH, 4) CH3Br 5) H2, Pd (b) Starting with the molecule shown below and any other materials with two carbons or less, write out an alternate synthesis of the circled molecule. More than one step is needed. Indicate the reagent(s) and the major product in all the steps in your synthesis. (5 pts) 2024 Fall Term (1) Organic Chemistry 1 (Lec) CHEM 22204 02[6386] (Hunter College) (c) Using the same starting material as in part (b) and any other materials win two carpons or less, write out syntheses of the circled molecules shown below. More than one step is needed in each case. Indicate the reagent(s) and the major product in all the steps in your synthesis. You may use reactions and products from your synthesis in part (b). (5 pts)
alt ons for Free Response Questions FRQ 1: 0/5 To spectrophotometrically determine the mass percent of cobalt in an ore containing cobalt and some inert materials, solutions with known [Co?) are prepared and absorbance of each of the solutions is measured at the wavelength of optimum absorbance. The data are used to create a calibration plot, shown below. 0.90- 0.80- 0.70 0.60 0.50 0.40- 0.30 0.20- 0.10- 0.00- 0.005 0.010 Concentration (M) 0.015 A 0.630 g sample of the ore is completely dissolved in concentrated HNO3(aq). The mixture is diluted with water to a final volume of 50.00 ml. Assume that all the cobalt in the ore sample is converted to Co2+(aq). a. What is the [Co2] in the solution if the absorbance of a sample of the solution is 0.74? 13 ✗ b. Calculate the number of moles of Co2+(aq) in the 50.00 mL solution. 0.008 mols Co
Please correct answer and don't used hand raiting

Chapter 14 Solutions

Chemistry Principles And Practice

Ch. 14 - Explain why terms for pure liquids and solids do...Ch. 14 - Temperature influences solubility. Does...Ch. 14 - Prob. 14.13QECh. 14 - Prob. 14.14QECh. 14 - Prob. 14.15QECh. 14 - Prob. 14.16QECh. 14 - Prob. 14.17QECh. 14 - Prob. 14.18QECh. 14 - At 2000 K, experiments show that the equilibrium...Ch. 14 - At 500 K, the equilibrium constant is 155 for...Ch. 14 - At 77 C, Kp is 1.7 104 for the formation of...Ch. 14 - Consider the following equilibria involving SO2(g)...Ch. 14 - Kc at 137 C is 4.42 for NO(g) + 12 Br2(g) NOBr(g)...Ch. 14 - Prob. 14.24QECh. 14 - Prob. 14.25QECh. 14 - Prob. 14.26QECh. 14 - Prob. 14.27QECh. 14 - Prob. 14.28QECh. 14 - Prob. 14.29QECh. 14 - Prob. 14.30QECh. 14 - Prob. 14.31QECh. 14 - Prob. 14.32QECh. 14 - Prob. 14.33QECh. 14 - Prob. 14.34QECh. 14 - Prob. 14.35QECh. 14 - Consider the system...Ch. 14 - Prob. 14.37QECh. 14 - Prob. 14.38QECh. 14 - Prob. 14.39QECh. 14 - Prob. 14.40QECh. 14 - Prob. 14.41QECh. 14 - Prob. 14.42QECh. 14 - Prob. 14.43QECh. 14 - Prob. 14.44QECh. 14 - Prob. 14.45QECh. 14 - Prob. 14.46QECh. 14 - Prob. 14.47QECh. 14 - Prob. 14.48QECh. 14 - Prob. 14.49QECh. 14 - Prob. 14.50QECh. 14 - Prob. 14.51QECh. 14 - Consider 0.200 mol phosphorus pentachloride sealed...Ch. 14 - Prob. 14.53QECh. 14 - Prob. 14.54QECh. 14 - Prob. 14.55QECh. 14 - Prob. 14.56QECh. 14 - Prob. 14.57QECh. 14 - Prob. 14.58QECh. 14 - Prob. 14.59QECh. 14 - Prob. 14.60QECh. 14 - Prob. 14.61QECh. 14 - Write the expression for the equilibrium constant...Ch. 14 - Prob. 14.63QECh. 14 - Prob. 14.64QECh. 14 - Write the expression for the solubility product...Ch. 14 - Prob. 14.66QECh. 14 - Prob. 14.67QECh. 14 - The solubility of silver iodate, AgIO3, is 1.8 ...Ch. 14 - Prob. 14.69QECh. 14 - Prob. 14.70QECh. 14 - Prob. 14.71QECh. 14 - Prob. 14.72QECh. 14 - Even though barium is toxic, a suspension of...Ch. 14 - Lead poisoning has been a hazard for centuries....Ch. 14 - Calculate the solubility of barium sulfate (Ksp =...Ch. 14 - Calculate the solubility of copper(II) iodate,...Ch. 14 - Calculate the solubility of lead fluoride, PbF2...Ch. 14 - Calculate the solubility of zinc carbonate, ZnCO3...Ch. 14 - Prob. 14.79QECh. 14 - Prob. 14.80QECh. 14 - Use the solubility product constant from Appendix...Ch. 14 - Prob. 14.82QECh. 14 - Some barium chloride is added to a solution that...Ch. 14 - Prob. 14.84QECh. 14 - Prob. 14.85QECh. 14 - Prob. 14.86QECh. 14 - Prob. 14.87QECh. 14 - Prob. 14.88QECh. 14 - Prob. 14.89QECh. 14 - Prob. 14.90QECh. 14 - Prob. 14.91QECh. 14 - At 3000 K, carbon dioxide dissociates CO2(g) ...Ch. 14 - Prob. 14.94QECh. 14 - Nitrogen, hydrogen, and ammonia are in equilibrium...Ch. 14 - The concentration of barium in a saturated...Ch. 14 - According to the Resource Conservation and...Ch. 14 - Prob. 14.98QE
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781285199030
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY