(a)
Interpretation:
The equilibrium mole fraction of methanol at
Concept introduction:
Mole fraction formethanol synthesis reaction is calculated with the help of the extent of reaction which is defined as a measure of the extent to which the reaction proceeds.
Where,
The overall stoichiometric coefficient for this reaction is,
The individual stoichiometric coefficients for all the components in this reaction is:
Equilibrium constant of this reaction from equation 14.28 can be written as:
Where,
Gibbs free energy in terms of equilibrium constant is written as:
Also, Gibbs free energy is calculated using heat of reaction from the equation given as
Here,
Where,
(a)
Answer to Problem 14.21P
The equilibrium mole fraction of methanol at
Explanation of Solution
From Table C.4 the standard heat of reaction and Gibbs free energy for methanol formation is:
From Table C.1 the coefficients for the heat capacity of the component gases are given as:
Substance | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Now, use equations set (6) to evaluate the values of
Now, use equation (5) to calculate the value of
The equilibrium constant for the methanol synthesis reaction at 300 K can be calculated as given below:
The initial and final pressure of the system is kept at
The mole fraction of all the species in terms of extent of reaction are:
Now, use equation (3) for the equilibrium constant of this reaction to calculate the extent of reaction as:
Use this extent of reaction to calculate the mole fraction of methanol as:
Therefore, the equilibrium mole fraction of methanol at
(b)
Interpretation:
The temperature for the given equilibrium mole fraction of methanol at
Concept introduction:
Mole fraction for methanol synthesis reaction is calculated with the help of the extent of reaction which is defined as a measure of the extent to which the reaction proceeds.
Where,
The overall stoichiometric coefficient for this reaction is,
The individual stoichiometric coefficients for all the components in this reaction is:
Equilibrium constant of this reaction from equation 14.28 can be written as:
Where,
Gibbs free energy in terms of equilibrium constant is written as:
Also, Gibbs free energy is calculated using heat of reaction from the equation given as
Here,
Where,
(b)
Answer to Problem 14.21P
The equilibrium mole fraction of methanol at
Explanation of Solution
The initial and final pressure of the system is kept at
The mole fraction of all the species in terms of extent of reaction
Now, use equation (3) to calculate the equilibrium constant of this reaction as:
Use this equilibrium constant to calculate
From Table C.4 the standard heat of reaction and Gibbs free energy for methanol formation is:
From part (a), the calculated values of
Now, use equations set (6) in equation (5) along with the value of
Now, by trying different values of
Thus, the temperature at which the equilibrium mole fraction of methanol is
(c)
Interpretation:
The temperature for the given equilibrium mole fraction of methanol at
Concept introduction:
Mole fraction for methanol synthesis reaction is calculated with the help of the extent of reaction which is defined as a measure of the extent to which the reaction proceeds.
Where,
The overall stoichiometric coefficient for this reaction is,
The individual stoichiometric coefficients for all the components in this reaction is:
Equilibrium constant of this reaction from equation 14.28 can be written as:
Where,
Gibbs free energy in terms of equilibrium constant is written as:
Also, Gibbs free energy is calculated using heat of reaction from the equation given as
Here,
Where,
(c)
Answer to Problem 14.21P
The equilibrium mole fraction of methanol at
Explanation of Solution
The initial and final pressure of the system are taken as:
The mole fraction of all the species in terms of extent of reaction
Now, use equation (3) to calculate the equilibrium constant of this reaction as:
Use this equilibrium constant to calculate
From Table C.4 the standard heat of reaction and Gibbs free energy for methanol formation is:
From part (a), the calculated values of
Now, use equations set (6) in equation (5) along with the value of
Now, by trying different values of
Thus, the temperature at which the equilibrium mole fraction of methanol is
(d)
Interpretation:
The temperature for the given equilibrium mole fraction of methanol at
Concept introduction:
Mole fraction for methanol synthesis reaction is calculated with the help of the extent of reaction which is defined as a measure of the extent to which the reaction proceeds.
Where,
The overall stoichiometric coefficient for this reaction is,
The individual stoichiometric coefficients for all the components in this reaction is:
Gibbs free energy in terms of equilibrium constant is written as:
Also, Gibbs free energy is calculated using heat of reaction from the equation given as
Here,
Where,
Equilibrium constant of this reaction for an ideal solution of gases from equation 14.28 can be written as:
Where,
The formula to calculate
Here,
(d)
Answer to Problem 14.21P
The equilibrium mole fraction of methanol at
Explanation of Solution
The initial and final pressure of the system are taken as:
The mole fraction of all the species in terms of extent of reaction
From Table-B.1 of appendix B, the critical properties and acentric factor of methanol is:
Component | Pc (bar) | Tc (K) | |
|
|
|
|
|
|
|
|
|
|
|
|
Let the guessed value of the temperature be
Use equations set (9) to calculate the values of
Use equation (8) to calculate the value of
Now, use equation (7) to calculate the equilibrium constant of this reaction as:
Use this equilibrium constant to calculate
From Table C.4 the standard heat of reaction and Gibbs free energy for methanol formation is:
From part (a), the calculated values of
Now, use equations set (6) in equation (5) and calculate the value of
Since, the calculated value of
Thus, the temperature at which the equilibrium mole fraction of methanol is
Want to see more full solutions like this?
Chapter 14 Solutions
EBK INTRODUCTION TO CHEMICAL ENGINEERIN
- 9.3. An ideal PD controller has the transfer function P Ke (TDs + 1) E An actual PD controller had the transfer function P = Ke E TDS +1 (TDIẞ)s +1 where ẞis a large constant in an industrial controller. If a unit-step change in error is introduced into a controller having the second transfer function, show that P(1) = Kc (1 + Ae˜¯BD) where A is a function of ẞwhich you are to determine. For ẞ=5 and K = 0.5, plot P(t) versus tl tp. As ẞ, show that the unit-step response approaches that for the ideal controller.arrow_forward9.1. A pneumatic PI temperature controller has an output pressure of 10 psig when the set point and process temperature coincide. The set point is suddenly increased by 10°F (i.e., a step change in error is introduced), and the following data are obtained: Time, s psig 0- 10 0+ 8 20 7 60 90 5 3.5 Determine the actual gain (psig per degree Fahrenheit) and the integral time.arrow_forward2. A unit-step change in error is introduced into a PID controller. If Ke TD = 0.5, plot the response of the controller P(t). = =10, 1, andarrow_forward
- A distribution of values is normal with a mean of 211 and a standard deviation of 50.4. Find the probability that a randomly selected value is between 59.8 and 155.6. P(59.8 X 155.6) = Enter your answer as a number accurate to 4 decimal places. Answers obtained using exact z-scores or z- scores rounded to 3 decimal places are accepted.arrow_forwardTopic: Production of propylene glycol from glycerol derived from palm oil. QUESTION:Estimate capital items, operating costs and economics of the plant. Finally, report the estimatedreturn.The Detailed Factorial Method with approximately 25% accuracy must be used for detailedeconomic evaluation.Plant lifetime is fixed at 15 years.1) Depreciation and TaxesCalculate the depreciation using a suitable method (e.g., straight-line, declining balance) andincorporate tax implications based on current tax laws applicable to chemical plants. Use following attached Process Flow Diagram as reference for this question.arrow_forwardTopic: Production of propylene glycol from glycerol derived from palm oil. QUESTION:Estimate capital items, operating costs and economics of the plant. Finally, report the estimatedreturn.The Detailed Factorial Method with approximately 25% accuracy must be used for detailedeconomic evaluation.Plant lifetime is fixed at 15 years.1) Revenue EstimationEstimate the annual revenue based on the production capacity, product selling price, and marketdemand. Groups should also consider potential market fluctuations. Use following attached Process Flow Diagram as reference for this question.arrow_forward
- Topic: Production of propylene glycol from glycerol derived from palm oil. QUESTION:Estimate capital items, operating costs and economics of the plant. Finally, report the estimatedreturn.The Detailed Factorial Method with approximately 25% accuracy must be used for detailedeconomic evaluation.Plant lifetime is fixed at 15 years.TASKS:1) Capital Cost EstimationProvide a detailed breakdown of the initial capital investment, including land, building,equipment, and installation costs. Include any assumptions made in the estimation. Use following attached Process Flow Diagram as reference for this question.arrow_forwardTopic: Production of propylene glycol from glycerol derived from palm oil. QUESTION:Estimate capital items, operating costs and economics of the plant. Finally, report the estimatedreturn.The Detailed Factorial Method with approximately 25% accuracy must be used for detailedeconomic evaluation.Plant lifetime is fixed at 15 years.1) Breakeven Year CalculationUsing the cash flow analysis, calculate the breakeven year when the cumulative cash inflowequals the initial investment. Groups should graphically represent the breakeven point. Use following attached Process Flow Diagram as reference for this question.arrow_forwardTopic: Production of propylene glycol from glycerol derived from palm oil. QUESTION:Estimate capital items, operating costs and economics of the plant. Finally, report the estimatedreturn.The Detailed Factorial Method with approximately 25% accuracy must be used for detailedeconomic evaluation.Plant lifetime is fixed at 15 years.1) Cash Flow AnalysisDevelop a projected cash flow statement for the first 10 years of plant operation, consideringall the costs and revenues. Include working capital, loans, and interest payments if applicable. Use following attached Process Flow Diagram as reference for this question.arrow_forward
- Topic: Production of propylene glycol from glycerol derived from palm oil.QUESTION:Estimate capital items, operating costs and economics of the plant. Finally, report the estimatedreturn.The Detailed Factorial Method with approximately 25% accuracy must be used for detailedeconomic evaluation.Plant lifetime is fixed at 15 years.1) Operational Cost AnalysisCalculate the yearly operational costs, including raw materials, labor, utilities, maintenance,and other recurring expenses. Provide a clear explanation of how these costs are derived. Use following attached Process Flow Diagram as reference for this question.arrow_forwardChemical Engineering Questionarrow_forwardA steam boiler or steam generator is a device used to produce steam by transferring heat to water. In our case, the combustion chamber is fueled with propane (C3H8) at a flowrate of 50.0 mol/h in an excess air of 50%. Assume that both propane and air are fed at 25ºC and the combustion gases leave the chamber at 200ºC. Pressure can be assumed to be atmospheric.* Determine: 1. The heat obtained assuming complete combustion. Compare the results using elements or compounds 2. The steam flowrate that could be generated if the heat is directed to obtain superheated steam at 2 bar and 160ºC from saturated liquid water at this pressure solvearrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The