Structural Analysis (10th Edition)
Structural Analysis (10th Edition)
10th Edition
ISBN: 9780134610672
Author: Russell C. Hibbeler
Publisher: PEARSON
Question
100%
Book Icon
Chapter 14, Problem 14.1P
To determine

The structure stiffness matrix for the truss.

Expert Solution & Answer
Check Mark

Answer to Problem 14.1P

The structure stiffness matrix for the truss is shown below.

k=AE[0.35360.35360.35360.353600000.35360.85360.35360.35360000.50.35360.35361.06080.35360.35360.35360.35360.35360.35360.35360.35361.06080.35360.35360.35360.3536000.35360.35360.85360.35360.50000.35360.35360.35360.353600000.35360.35360.500.85360.353600.50.35360.3536000.35360.8536]

Explanation of Solution

Concept Used:

Write the expression for direction cosine in x-direction.

λx=xFxNL          ...... (I)

Here, coordinate of x at near end of the member is xF and coordinate of x at far end of the member is xN.

Write the expression for direction cosine in x-direction.

λy=yFyNL          ...... (II)

Here, coordinate of y at near end of the member is yF and coordinate of y at far end of the member is yN.

Write the stiffness matrix for the member.

AEL[λx2λxλyλx2λxλyλxλyλy2λxλyλy2λx2λxλyλx2λxλyλxλyλy2λxλyλy2]

Here, cross-sectional area of the member is A, length of the member is L, modulus of elasticity is E and moment of inertia is I.

Write the expression for total structural stiffness matrix.

k=k1+k2+k3+k4+k5          ...... (III)

Here, the structural stiffness matrix is k.

Calculation:

The free body diagram of the truss is shown below.

Structural Analysis (10th Edition), Chapter 14, Problem 14.1P

          Figure (1)

Consider the member-1.

Calculate the length of member 1.

L=(1 m)2+(1 m)2=2 m

Calculate direction cosine in x-direction.

Substitute 1 m for xF, 0 m for xN and 2 m for L in Equation (I).

λx=1 m0 m2 m=0.70711

Calculate direction cosine in y-direction.

Substitute 1 m for yF, 2 m for yN and 2 m for L in Equation (II).

λy=1 m2 m2 m=0.70711

The stiffness matrix for member-1 is shown below.

Substitute 2m for L, 0.70711 for λx and 0.70711 for λy in the stiffness matrix.

   k1=AE2[(0.70711)2(0.70711)(0.70711)(0.70711)2(0.70711)(0.70711)(0.70711)(0.70711)(0.70711)2(0.70711)(0.70711)(0.70711)2(0.70711)2(0.70711)(0.70711)(0.70711)2(0.70711)(0.70711)(0.70711)(0.70711)(0.70711)2(0.70711)(0.70711)(0.70711)2]

k1=AE[0.35360.35360.35360.35360.35360.35360.35360.35360.35360.35360.35360.35360.35360.35360.35360.3536]1234          ...... (IV)

Consider the member- 2.

Calculate the length of member 2.

L=(1 m)2+(1 m)2=2 m

Calculate direction cosine in x-direction.

Substitute 2 m for xF, 1 m for xN and 2 m for L in Equation (I).

λx=2 m1 m2 m=0.70711

Calculate direction cosine in y-direction.

Substitute 0 m for yF, 1 m for yN and 2 m for L in Equation (II).

λy=0 m1 m2 m=0.70711

The stiffness matrix for member-2 is shown below.

Substitute 2m for L, 0.70711 for λx and 0.70711 for λy in stiffness matrix.

   k2=AE2[(0.70711)2(0.70711)(0.70711)(0.70711)2(0.70711)(0.70711)(0.70711)(0.70711)(0.70711)2(0.70711)(0.70711)(0.70711)2(0.70711)2(0.70711)(0.70711)(0.70711)2(0.70711)(0.70711)(0.70711)(0.70711)(0.70711)2(0.70711)(0.70711)(0.70711)2]

k2=AE[0.35360.35360.35360.35360.35360.35360.35360.35360.35360.35360.35360.35360.35360.35360.35360.3536]3456          ...... (V)

Consider the member- 3.

Calculate direction cosine in x-direction.

Substitute 0 m for xF, 2 m for xN and 2 m for L in Equation (I).

λx=0 m2 m2 m=1

Calculate direction cosine in y-direction.

Substitute 0 m for yF, 0 m for yN and 2 m for L in Equation (II).

λy=0 m0 m2 m=0

The stiffness matrix for member-3 is shown below.

Substitute 2m for L, 1 for λx and 0 for λy in stiffness matrix.

k3=AE2[(1)2(1)(0)(1)2(1)(0)(1)(0)(0)2(1)(0)(0)2(1)2(1)(0)(1)2(1)(0)(1)(0)(0)2(1)(0)(0)2]=AE[0.500.5000000.500.500000]5678          ...... (VI)

Consider the member- 4.

Calculate the length of member 4.

L=(1 m)2+(1 m)2=2 m

Calculate direction cosine in x-direction.

Substitute 0 m for xF, 1 m for xN and 2 m for L in Equation (I).

λx=0 m1 m2 m=0.70711

Calculate direction cosine in y-direction.

Substitute 0 m for yF, 1 m for yN and 2 m for L in Equation (II).

λy=0 m1 m2 m=0.70711

The stiffness matrix for member-4 is shown below.

Substitute 2m for L, 0.70711 for λx and 0.70711 for λy in stiffness matrix.

   k4=AE2[(0.70711)2(0.70711)(0.70711)(0.70711)2(0.70711)(0.70711)(0.70711)(0.70711)(0.70711)2(0.70711)(0.70711)(0.70711)2(0.70711)2(0.70711)(0.70711)(0.70711)2(0.70711)(0.70711)(0.70711)(0.70711)(0.70711)2(0.70711)(0.70711)(0.70711)2]3478

k4=AE[0.35360.35360.35360.35360.35360.35360.35360.35360.35360.35360.35360.35360.35360.35360.35360.3536]3478          ...... (VII)

Consider the member- 5.

Calculate direction cosine in x-direction.

Substitute 0 m for xF, 0 m for xN and 2 m for L in Equation (I).

λx=0 m0 m2 m=0

Calculate direction cosine in y-direction.

Substitute 0 m for yF, 0 m for yN and 2 m for L in Equation (II).

λy=0 m2 m2 m=1

The stiffness matrix for member-5 is shown below.

Substitute 2m for L, 0 for λx and 1 for λy in stiffness matrix.

k5=AE2[(0)2(1)(0)(0)2(1)(0)(1)(0)(1)2(1)(0)(1)2(0)2(1)(0)(0)2(1)(0)(1)(0)(1)2(1)(0)(1)2]=AE[000000.500.5000000.500.5]4278          ...... (VIII)

Calculate total structural stiffness matrix.

Substitute the values of k1, k2, k3, k4 and k5 in Equation (III).

k=AE[0.35360.35360.35360.353600000.35360.85360.35360.35360000.50.35360.35361.06080.35360.35360.35360.35360.35360.35360.35360.35361.06080.35360.35360.35360.3536000.35360.35360.85360.35360.50000.35360.35360.35360.353600000.35360.35360.500.85360.353600.50.35360.3536000.35360.8536]

Conclusion:

The structure stiffness matrix for the truss is shown below.

k=AE[0.35360.35360.35360.353600000.35360.85360.35360.35360000.50.35360.35361.06080.35360.35360.35360.35360.35360.35360.35360.35361.06080.35360.35360.35360.3536000.35360.35360.85360.35360.50000.35360.35360.35360.353600000.35360.35360.500.85360.353600.50.35360.3536000.35360.8536]

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q.2 The girder AB as shown in Fig. 2 has a span of 18m and supports concentrated loads located as shown. Determine the plastic moment capacity MP and the plastic collapse load Pc for the given load conditions. Use either Equilibrium drVirtual Work method in your solution. [30 marks] 5P 5P C d B 6 m 6 m 6 m 18 m Fig. 2 - Prismatic Continuous
337 kN -Weld -25° 6 mm PROBLEM 1.33 A steel pipe of 300 mm outer diameter is fabricated from 6 mm thick plate by welding along a helix which forms an angle of 25° with a plane perpendicular to the axis of the pipe. Knowing that the maximum allowable normal and shearing stresses in directions respectively normal and tangential to the weld are σ = 50 MPa and 7 = 30 MPa, determine the magnitude P of the largest axial force that can be applied to the pipe.
2.2 Identify the Zero Force Members for the truss shown. Show your final answer with a sketch and mark the zero force bars with "0". D 700 N 500 N
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Structural Analysis
Civil Engineering
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:Cengage,
Text book image
Structural Analysis (10th Edition)
Civil Engineering
ISBN:9780134610672
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Fundamentals of Structural Analysis
Civil Engineering
ISBN:9780073398006
Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:McGraw-Hill Education
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781337551663
Author:DUNLAP, Richard A.
Publisher:Cengage,
Text book image
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning