The total number of moles in the system and the equilibrium composition of the mixture has to be found. The partial pressures of reactants and products has to be found at equilibrium. And value of the K p also has to be found. Concept introduction: Equilibrium constant ( K c ) : A system is said to be in equilibrium when all the measurable properties of the system remains unchanged with the time. Equilibrium constant is the ratio of the rate constants of the forward and reverse reactions at a given temperature. In other words it is the ratio of the concentrations of the products to concentrations of the reactants. Each concentration term is raised to a power, which is same as the coefficients in the chemical reaction . Consider the reaction where the reactant A is giving product B. A ⇌ B Rate of forward reaction = Rate of reverse reaction k f [ A ] =k r [ B ] On rearranging, [ A ] [ B ] = k f k r = K c Where, k f is the rate constant of the forward reaction. k r is the rate constant of the reverse reaction. K c is the equilibrium constant. Equilibrium constant ( K p ) : For gaseous substances the concentration will be proportional to its partial pressure. The equilibrium constant for gaseous reactions can be expressed in terms of the partial pressures of the gaseous products and reactants, and it is called equilibrium constant K p . Ideal gas equation is an equation that is describing the state of a imaginary ideal gas. PV =n RT Where, P is the pressure of the gas V is the volume n is the number of moles of gas R is the universal gas constant (R=0 .0821LatmK -1 mol -1 ) T is the temperature
The total number of moles in the system and the equilibrium composition of the mixture has to be found. The partial pressures of reactants and products has to be found at equilibrium. And value of the K p also has to be found. Concept introduction: Equilibrium constant ( K c ) : A system is said to be in equilibrium when all the measurable properties of the system remains unchanged with the time. Equilibrium constant is the ratio of the rate constants of the forward and reverse reactions at a given temperature. In other words it is the ratio of the concentrations of the products to concentrations of the reactants. Each concentration term is raised to a power, which is same as the coefficients in the chemical reaction . Consider the reaction where the reactant A is giving product B. A ⇌ B Rate of forward reaction = Rate of reverse reaction k f [ A ] =k r [ B ] On rearranging, [ A ] [ B ] = k f k r = K c Where, k f is the rate constant of the forward reaction. k r is the rate constant of the reverse reaction. K c is the equilibrium constant. Equilibrium constant ( K p ) : For gaseous substances the concentration will be proportional to its partial pressure. The equilibrium constant for gaseous reactions can be expressed in terms of the partial pressures of the gaseous products and reactants, and it is called equilibrium constant K p . Ideal gas equation is an equation that is describing the state of a imaginary ideal gas. PV =n RT Where, P is the pressure of the gas V is the volume n is the number of moles of gas R is the universal gas constant (R=0 .0821LatmK -1 mol -1 ) T is the temperature
Solution Summary: The author explains the equilibrium constant, which is the ratio of the rate constants of forward and reverse reactions at a given temperature.
Definition Definition Study of the speed of chemical reactions and other factors that affect the rate of reaction. It also extends toward the mechanism involved in the reaction.
Chapter 14, Problem 14.125QP
Interpretation Introduction
Interpretation:
The total number of moles in the system and the equilibrium composition of the mixture has to be found. The partial pressures of reactants and products has to be found at equilibrium. And value of the Kp also has to be found.
Concept introduction:
Equilibrium constant(Kc): A system is said to be in equilibrium when all the measurable properties of the system remains unchanged with the time. Equilibrium constant is the ratio of the rate constants of the forward and reverse reactions at a given temperature. In other words it is the ratio of the concentrations of the products to concentrations of the reactants. Each concentration term is raised to a power, which is same as the coefficients in the chemical reaction.
Consider the reaction where the reactant A is giving product B.
A⇌B
Rate of forward reaction = Rate of reverse reactionkf[A]=kr[B]
On rearranging,
[A][B]=kfkr=Kc
Where,
kf is the rate constant of the forward reaction.
kr is the rate constant of the reverse reaction.
Kc is the equilibrium constant.
Equilibrium constant(Kp): For gaseous substances the concentration will be proportional to its partial pressure. The equilibrium constant for gaseous reactions can be expressed in terms of the partial pressures of the gaseous products and reactants, and it is called equilibrium constant Kp .
Ideal gas equation is an equation that is describing the state of a imaginary ideal gas.
PV=n RT
Where,
P is the pressure of the gas
V is the volume
n is the number of moles of gas
R is the universal gas constant (R=0.0821LatmK-1mol-1)
6. A solution (0.0004 M) of Fe(S2CNEt2)3 (see the structural drawing below) in chloroform
has absorption bands at:
350 nm (absorbance A = 2.34);
514 nm(absorbance A = 0.0532);
Calculate the molar absorptivity values for these bands. Comment
on their possible nature (charge transfer transitions or d-d
S
N-
transitions?).
(4 points)
What is the mechanism for this?
For questions 1-4, consider the following complexes:
[Co(CN)6],
[COC14]²,
[Cr(H2O)6]²+
4.
Room temperature (20°C) measurement of molar magnetic susceptibility (Xm) for
Fe(NH4)2(SO4)2×6H2O is 1.1888 x 102 cgs (Gaussian units). Calculate effective magnetic
moment and provide a number of unpaired electrons for the iron ion. Use this number to
rationalize the coordination geometry around iron center.
(4 points)
Chapter 14 Solutions
Student Solutions Manual for Ebbing/Gammon's General Chemistry
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell