![CHEMISTRY:MOLECULAR NATURE...-ALEKS 360](https://www.bartleby.com/isbn_cover_images/9781259916083/9781259916083_largeCoverImage.gif)
(a)
Interpretation:
Reason for why alkali metals have high second ionization energy has to be explained.
Concept Introduction:
First ionization energy: The ionization energy is the minimum energy required to remove the electron from an isolated atom which is in the gaseous state results to give gaseous ion with one positive charge.
Second ionization energy: The minimum energy needed to remove an electron from a unipositive gaseous ion to form a dipositive ion in the ground state is known as second ionization energy.
The outer electronic configuration of Alkali metals is
(a)
![Check Mark](/static/check-mark.png)
Explanation of Solution
The outer electronic configuration of Alkali metals is
The energy level of the element is changed after removing an electron and the electrons are held more tightly by the nucleus in the lower level. So a huge amount of energy is needed to remove the second electron.
(b)
Interpretation:
Enthalpy of reaction per mole of
Concept Introduction:
The ionization energy is the minimum energy required to remove the electron from an isolated atom which is in the gaseous state results to give gaseous ion with one positive charge.
(b)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Given data is shown below:
The heat obtained during the breaking down of
Heat released during the breaking down of two moles
Therefore,
Enthalpy of reaction per mole of
Enthalpy of reaction per mole of
Want to see more full solutions like this?
Chapter 14 Solutions
CHEMISTRY:MOLECULAR NATURE...-ALEKS 360
- please solve this, and help me know which boxes to check. Thank you so much in advance.arrow_forwardElectronegativity is a measure of the tendency of an atom to attract a bonding pair of electrons. Describe how electronegativity is illustrated on the periodic table including trends between groups and periods and significance of atom size.arrow_forwardDefine the term “transition.” How does this definition apply to the transition metals?arrow_forward
- Describe how the properties of the different types of elements (metals, nonmetals, metalloids) differ.arrow_forwardUse a textbook or other valid source to research the physical and chemical properties of each element listed in Data Table 1 using the following as a guideline: Ductile (able to be deformed without losing toughness) and malleable (able to be hammered or pressed permanently out of shape without breaking or cracking) or not ductile or malleable Good, semi, or poor conductors of electricity and heat High or low melting and boiling points Occur or do not occur uncombined/freely in nature High, intermediate, or low reactivity Loses or gains electrons during reactions or is not reactivearrow_forwardProvide the Physical and Chemical Properties of Elements of the following elements listedarrow_forward
- Questions 4 and 5arrow_forwardFor a titration of 40.00 mL of 0.0500 M oxalic acid H2C2O4 with 0.1000 M KOH, calculate the pH at each of the following volume of KOH used in the titration: 1) before the titration begin;2) 15 mL; 3) 20 mL; 4) 25 mL; 5) 40 mL; 6) 50 mL. Ka1 = 5.90×10^-2, Ka2 = 6.50×10^-5 for oxalic acid.arrow_forwardPredict the major organic product(s), if any, of the following reactions. Assume all reagents are in excess unless otherwise indicated.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)