PRACT. OF STAT. IN LIFE SCI.W/ACHIEVE 1
PRACT. OF STAT. IN LIFE SCI.W/ACHIEVE 1
4th Edition
ISBN: 9781319424114
Author: Moore
Publisher: MAC HIGHER
Question
Book Icon
Chapter 14, Problem 14.10AYK

(a)

To determine

To find out what is the sampling distribution of the mean blood arsenic concentration x¯ in many samples of 25 adults if the claim is true and sketch the density curve of this distribution.

(a)

Expert Solution
Check Mark

Answer to Problem 14.10AYK

The sampling distribution of the mean blood arsenic concentration x¯ in many samples of 25 adults is x¯N(μ=3.2,σ=0.3) .

Explanation of Solution

It is given in the question that Arsenic blood concentrations in healthy individuals are normally distributed with mean μ=3.2 micro per deciliter and standard deviation σ=1.5μg/dl . And they have taken a sample of adults and asked whether the data provide good evidence that the mean blood arsenic concentration in this population is elevated compared with the 3.2μg/dl mea of the population of healthy individuals. Thus, the parameter defined in this scenario is μ , the mean blood arsenic concentration in this population. And the null and alternative hypotheses is defined by:

  H0:μ=3.2μg/dlHa:μ3.2μg/dl

Now, we know that the mean blood arsenic concentration x¯ in many samples of 25 adults follows the Normal distribution as the population is normal. So, the sampling distribution of the mean blood arsenic concentration x¯ in many samples of 25 adults is μ=3.2 micro per deciliter. And we have,

  σx¯=σn=1.525=0.3

Thus, we have, x¯N(μ=3.2,σ=0.3) .

And the sketch of the density curve of this distribution is as follows:

  PRACT. OF STAT. IN LIFE SCI.W/ACHIEVE 1, Chapter 14, Problem 14.10AYK

(b)

To determine

To obtain P-value for this area and what would we conclude.

(b)

Expert Solution
Check Mark

Answer to Problem 14.10AYK

The P-value is p=0.6171 .

Explanation of Solution

It is given in the question that Arsenic blood concentrations in healthy individuals are normally distributed with mean μ=3.2 micro per deciliter and standard deviation σ=1.5μg/dl . And they have taken a sample of adults and asked whether the data provide good evidence that the mean blood arsenic concentration in this population is elevated compared with the 3.2μg/dl mea of the population of healthy individuals. Thus, the parameter defined in this scenario is μ , the mean blood arsenic concentration in this population. And the null and alternative hypotheses is defined by:

  H0:μ=3.2μg/dlHa:μ3.2μg/dl

And x¯N(μ=3.2,σ=0.3) .

Now, the first SRS gives,

  x¯=3.35σ=1.5n=25μ=3.2

So, we have the test statistics value and P-value as:

  z=x¯μσn=3.353.21.525=0.5Pvalue=2×P(z<0.5)From the z table we get,p=0.6171

As we know that if the P-value is less than or equal to the significance level then the null hypothesis is rejected, so we have,

  P>0.05Fail to Reject H0

Thus, we conclude that we fail to reject the null hypothesis and there is no evidence that there is statistical difference.

(c)

To determine

To find out what would be the P-value for this area and what would we conclude.

(c)

Expert Solution
Check Mark

Answer to Problem 14.10AYK

The P-value is p=0.0668 .

Explanation of Solution

It is given in the question that Arsenic blood concentrations in healthy individuals are normally distributed with mean μ=3.2 micro per deciliter and standard deviation σ=1.5μg/dl . And they have taken a sample of adults and asked whether the data provide good evidence that the mean blood arsenic concentration in this population is elevated compared with the 3.2μg/dl mea of the population of healthy individuals. Thus, the parameter defined in this scenario is μ , the mean blood arsenic concentration in this population. And the null and alternative hypotheses is defined by:

  H0:μ=3.2μg/dlHa:μ3.2μg/dl

And x¯N(μ=3.2,σ=0.3) .

Now, the second SRS gives,

  x¯=3.75σ=1.5n=25μ=3.2

So, we have the test statistics value and P-value as:

  z=x¯μσn=3.753.21.525=1.83Pvalue=2×P(z<1.83)From the z table we get,p=0.0668

As we know that if the P-value is less than or equal to the significance level then the null hypothesis is rejected, so we have,

  P>0.05Fail to Reject H0

Thus, we conclude that we fail to reject the null hypothesis and there is no evidence that there is statistical difference.

(d)

To determine

To explain briefly why these P-valuestell us that one outcome is strong evidence against the null hypothesis and that the other outcome is not.

(d)

Expert Solution
Check Mark

Explanation of Solution

It is given in the question that Arsenic blood concentrations in healthy individuals are normally distributed with mean μ=3.2 micro per deciliter and standard deviation σ=1.5μg/dl . And they have taken a sample of adults and asked whether the data provide good evidence that the mean blood arsenic concentration in this population is elevated compared with the 3.2μg/dl mea of the population of healthy individuals. Thus, the parameter defined in this scenario is μ , the mean blood arsenic concentration in this population. And the null and alternative hypotheses is defined by:

  H0:μ=3.2μg/dlHa:μ3.2μg/dl

And x¯N(μ=3.2,σ=0.3) .

Now, from the first SRS we get the P-value p=0.6171 and from the second SRS we get p=0.0668 . So, as we know that if the P-value is less than or equal to the significance level then the null hypothesis is rejected. Now, the first P-value is not statistically significant at the α=0.05 level and the second P-value is not statistically significant at the α=0.05 level. However, the actual P-values are more informative because we can conclude that the studies can provide very strong evidence against null hypothesis.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Elementary StatisticsBase on the same given data uploaded in module 4, will you conclude that the number of bathroom of houses is a significant factor for house sellprice? I your answer is affirmative, you need to explain how the number of bathroom influences the house price, using a post hoc procedure. (Please treat number of bathrooms as a categorical variable in this analysis)Base on the same given data, conduct an analysis for the variable sellprice to see if sale price is influenced by living area. Summarize your finding including all regular steps (learned in this module) for your method. Also, will you conclude that larger house corresponding to higher price (justify)?Each question need to include a spss or sas output.       Instructions: You have to use SAS or SPSS to perform appropriate procedure: ANOVA or Regression based on the project data (provided in the module 4) and research question in the project file. Attach the computer output of all key steps (number) quoted in…
Elementary StatsBase on the given data uploaded in module 4, change the variable sale price into two categories: abovethe mean price or not; and change the living area into two categories: above the median living area ornot ( your two group should have close number of houses in each group). Using the resulting variables,will you conclude that larger house corresponding to higher price?Note: Need computer output, Ho and Ha, P and decision. If p is small, you need to explain what type ofdependency (association) we have using an appropriate pair of percentages.       Please include how to use the data in SPSS and interpretation of data.
An environmental research team is studying the daily rainfall (in millimeters) in a region over 100 days. The data is grouped into the following histogram bins: Rainfall Range (mm) Frequency 0-9.9 15 10 19.9 25 20-29.9 30 30-39.9 20 ||40-49.9 10 a) If a random day is selected, what is the probability that the rainfall was at least 20 mm but less than 40 mm? b) Estimate the mean daily rainfall, assuming the rainfall in each bin is uniformly distributed and the midpoint of each bin represents the average rainfall for that range. c) Construct the cumulative frequency distribution and determine the rainfall level below which 75% of the days fall. d) Calculate the estimated variance and standard deviation of the daily rainfall based on the histogram data.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Text book image
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Text book image
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
Text book image
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Text book image
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman