COLLEGE PHYSICS V1+WEBASSIGN MULTI-TERM
11th Edition
ISBN: 9780357683538
Author: SERWAY
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 12P
The intensity level produced by a jet airplane at a certain location is 150 dB. (a) Calculate the intensity of the sound wave generated by the jet at the given location. (b) Compare the answer to part (a) to the threshold of pain and explain why employees directing jet airplanes at airports must wear hearing protection equipment.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
No chatgpt pls will upvote
A beam of alpha-particles of energy 7.3MeV is used.The protons emitted at an angle of zero degree are found to have energy of 9.34MeV.Find the Q-value of this reaction .
An aluminum rod and a copper rod have the same length of 100cm at 5C. At what temperatures would one of the rods be 0.5 mm longer than the other? Which rod is longer at such temperature?
Chapter 14 Solutions
COLLEGE PHYSICS V1+WEBASSIGN MULTI-TERM
Ch. 14.3 - Which of the following actions will increase the...Ch. 14.6 - Suppose youre on a hot air balloon ride, carrying...Ch. 14.6 - As an airplane flying with constant velocity moves...Ch. 14.8 - Which of the following frequencies are higher...Ch. 14.10 - Prob. 14.5QQCh. 14.10 - Prob. 14.6QQCh. 14.11 - You are tuning a guitar by comparing the sound of...Ch. 14 - (a) You are driving down the highway in your car...Ch. 14 - When dealing with sound intensities and decibel...Ch. 14 - Fill in the blanks with the correct values (to two...
Ch. 14 - Explain how the distance to a lightning bolt (Fig....Ch. 14 - Two cars are on the same straight road. Car A...Ch. 14 - Why does a vibrating guitar string sound louder...Ch. 14 - You are driving toward the base of a cliff and you...Ch. 14 - Prob. 8CQCh. 14 - Prob. 9CQCh. 14 - Prob. 10CQCh. 14 - An airplane mechanic notices that the sound from a...Ch. 14 - Suppose you hear a clap of thunder 16.2 s after...Ch. 14 - Earthquakes at fault lines in Earths crust create...Ch. 14 - On a hot summer day, the temperature of air in...Ch. 14 - A dolphin located in seawater at a temperature of...Ch. 14 - A group of hikers hears an echo 3.00 s after...Ch. 14 - The range of human hearing extends from...Ch. 14 - Prob. 7PCh. 14 - A stone is dropped from rest into a well. The...Ch. 14 - A hammer strikes one end of a thick steel rail of...Ch. 14 - A person standing 1.00 m from a portable speaker...Ch. 14 - The mating call of a male cicada is among the...Ch. 14 - The intensity level produced by a jet airplane at...Ch. 14 - One of the loudest sounds in recent history was...Ch. 14 - A sound wave from a siren has an intensity of...Ch. 14 - A person wears a hearing aid that uniformly...Ch. 14 - The area of a typical eardrum is about 5.0 105...Ch. 14 - The toadfish makes use of resonance in a closed...Ch. 14 - A trumpet creates a sound intensity level of 1.15 ...Ch. 14 - There is evidence that elephants communicate via...Ch. 14 - A family ice show is held at an enclosed arena....Ch. 14 - A train sounds its horn as it approaches an...Ch. 14 - An outside loudspeaker (considered a small source)...Ch. 14 - Show that the difference in decibel levels 1 and 2...Ch. 14 - A skyrocket explodes 100 m above the ground (Fig....Ch. 14 - The Doppler Effect A baseball hits a car, breaking...Ch. 14 - A train is moving past a crossing where cars are...Ch. 14 - A commuter train passes a passenger platform at a...Ch. 14 - An airplane traveling at half the speed of sound...Ch. 14 - Two trains on separate tracks move toward each...Ch. 14 - At rest, a cars horn sounds the note A (440 Hz)....Ch. 14 - An alert physics student stands beside the tracks...Ch. 14 - A bat flying at 5.00 m/s is chasing an insect...Ch. 14 - A tuning fork vibrating at 512 Hz falls from rest...Ch. 14 - Expectant parents are thrilled to hear their...Ch. 14 - A supersonic jet traveling at Mach 3.00 at an...Ch. 14 - A yellow submarine traveling horizontally at 11.0...Ch. 14 - Two cars are stuck in a traffic jam and each...Ch. 14 - The acoustical system shown in Figure P14.38 is...Ch. 14 - Prob. 39PCh. 14 - Prob. 40PCh. 14 - A pair of speakers separated by a distance d =...Ch. 14 - Prob. 42PCh. 14 - A stretched string fixed at each end has a mass of...Ch. 14 - Prob. 44PCh. 14 - A stretched string of length L is observed to...Ch. 14 - A distance of 5.00 cm is measured between two...Ch. 14 - A steel wire with mass 25.0 g and length 1.35 m is...Ch. 14 - Prob. 48PCh. 14 - A 12.0-kg object hangs in equilibrium from a...Ch. 14 - In the arrangement shown in Figure P14.50, an...Ch. 14 - Prob. 51PCh. 14 - Standing-ware vibrations are set up in a crystal...Ch. 14 - A cars 30.0-kg front tire is suspended by a spring...Ch. 14 - Prob. 54PCh. 14 - Prob. 55PCh. 14 - The overall length of a piccolo is 32.0 cm. The...Ch. 14 - The human ear canal is about 2.8 cm long. If it is...Ch. 14 - A tunnel under a river is 2.00 km long. (a) At...Ch. 14 - A pipe open at both ends has a fundamental...Ch. 14 - The adjacent natural frequencies of an organ pipe...Ch. 14 - A guitarist sounds a tuner at 196 Hz while his...Ch. 14 - Two nearby trumpets are sounded together and a...Ch. 14 - Prob. 63PCh. 14 - The G string on a violin has a fundamental...Ch. 14 - Two train whistles have identical frequencies of...Ch. 14 - Two pipes of equal length are each open at one...Ch. 14 - A student holds a tuning dork oscillating at 256...Ch. 14 - Prob. 68PCh. 14 - Some studies suggest that the upper frequency...Ch. 14 - A typical sound level for a buzzing mosquito is 40...Ch. 14 - Assume a 150 W loudspeaker broadcasts sound...Ch. 14 - Two small loudspeakers emit sound waves of...Ch. 14 - An interstate highway has been built through a...Ch. 14 - Prob. 74APCh. 14 - Prob. 75APCh. 14 - Prob. 76APCh. 14 - On a workday, the average decibel level of a busy...Ch. 14 - Prob. 78APCh. 14 - A block with a speaker bolted to it is connected...Ch. 14 - A student stands several meters in front of a...Ch. 14 - Prob. 81APCh. 14 - A 0.500-m-long brass pipe open at both ends has a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- ROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20arrow_forwardQuestion B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…arrow_forwardSECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]arrow_forward
- Page 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…arrow_forwardHow does boiling point of water decreases as the altitude increases?arrow_forwardNo chatgpt pls will upvotearrow_forward
- 14 Z In figure, a closed surface with q=b= 0.4m/ C = 0.6m if the left edge of the closed surface at position X=a, if E is non-uniform and is given by € = (3 + 2x²) ŷ N/C, calculate the (3+2x²) net electric flux leaving the closed surface.arrow_forwardNo chatgpt pls will upvotearrow_forwardsuggest a reason ultrasound cleaning is better than cleaning by hand?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY