Physics
Physics
3rd Edition
ISBN: 9781259233616
Author: GIAMBATTISTA
Publisher: MCG
bartleby

Concept explainers

Question
Book Icon
Chapter 14, Problem 122P

(a)

To determine

Whether the blocks are necessarily in physical contact.

(a)

Expert Solution
Check Mark

Answer to Problem 122P

No, the blocks need not necessarily be in physical contact with each other.

Explanation of Solution

For the two blocks to be in thermal contact, the blocks need not touch each other. They can transfer heat by convection and radiation. Other method to be in thermal equilibrium is to connect a bridge of high conducting material between them. Therefore, the blocks need not necessarily be in physical contact with each other.

(b)

To determine

Whether the blocks will have the same internal energy if the temperatures of the blocks are same.

(b)

Expert Solution
Check Mark

Answer to Problem 122P

The blocks should have the same mass to have the same internal energy.

Explanation of Solution

The blocks are made up of the same material, aluminum. They have the same internal energy and the material of both blocks are the same. But for the internal energy of the blocks to become same, the blocks should have the same mass. This is the necessary condition for the internal energy of the blocks to be same. Therefore, the blocks should have the same mass to have the same internal energy.

(c)

To determine

Whether there is a net energy transfer between the blocks if their internal energies are not equal.

(c)

Expert Solution
Check Mark

Answer to Problem 122P

No, there is not net transfer of energy even though their internal energies are not equal.

Explanation of Solution

Energy transfer is associated with difference in temperature. The blocks are kept at the same temperatures. There is no difference in the temperature which does not owe to the transfer of heat energy. Therefore, there is not net transfer of energy even though their internal energies are not equal.

(d)

To determine

The final equilibrium temperature and the change in internal energy of cold and hot block.

(d)

Expert Solution
Check Mark

Answer to Problem 122P

The final equilibrium temperature and the change in internal energy of cold and hot block are 25.0°C_, 13.5kJ_ and 13.5kJ_ respectively.

Explanation of Solution

Write the expression of the total transfer associated with the blocks.

Qhot block cooling=Qcold block warming                                                                                       (I)

Write the expression for the heat associated with the cold block.

Qcold block warming=m2cAl(TTcool) (II)

Here, m2 is the mass of the cold block, cAl is the specific heat of Aluminum, T is the equilibrium temperature and Tcool is the temperature of the cold block.

Write the expression for the heat associated with the hot block.

Qhot block cooling=m1cAl(TThot) (III)

Here, m1 is the mass of the hot block, T is the equilibrium temperature and Thot is the temperature of the hot block.

Conclusion:

Substitute m1cAl(TThot) for Qhot block cooling and m2cAl(TTcool) for Qcold block warming in the equation (I).

m1cAl(TThot)=m2cAl(TTcool)

Substitute 1.00kg for m1, 900J/kgK for cAl, 40.0°C for Thot, 3.00kg for m2 and 20.0°C for Tcool in the above equation and rearrange it to find the equilibrium temperature.

(1.00kg)(900J/kgK)(T40.0°C)=(3.00kg)(900J/kgK)(T20.0°C)40.0°C+60.0°C=T+3.00TT=25.0°C

Substitute 1.00kg for m1, 900J/kgK for cAl, 40.0°C for Thot and 25.0°C for T in the equation (III).

Qhot block cooling=(1.00kg)(900J/kgK)(25.0°C40.0°C)=13.5kJ

Substitute 3.00kg for m2, 900J/kgK for cAl, 20.0°C for Tcool and 25.0°C for T in the equation (II).

Qcold block warming=(3.00kg)(900J/kgK)(25.0°C20.0°C)=13.5kJ

Therefore, the final equilibrium temperature and the change in internal energy of cold and hot block are 25.0°C_, 13.5kJ_ and 13.5kJ_ respectively.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
2 C01: Physical Quantities, Units and Measurementscobris alinu zotinUD TRO Bendemeer Secondary School Secondary Three Express Physics Chpt 1: Physical Quantities, Unit and Measurements Assignment Name: Chen ShiMan loov neowled soria 25 ( 03 ) Class: 3 Respect 6 Date: 2025.01.22 1 Which group consists only of scalar quantities? ABCD A acceleration, moment and energy store distance, temperature and time length, velocity and current mass, force and speed B D. B Which diagram represents the resultant vector of P and Q? lehtele 시 bas siqpeq olarist of beau eldeo qirie-of-qi P A C -B qadmis rle mengaib priwollot erT S Quilons of qira ono mont aboog eed indicator yh from West eril to Inioqbim srij enisinoo MA (6) 08 bas 8A aldao ni nolent or animaleb.gniweb slepe eld 260 km/h D 1 D. e 51
The figure gives the acceleration a versus time t for a particle moving along an x axis. The a-axis scale is set by as = 12.0 m/s². At t = -2.0 s, the particle's velocity is 11.0 m/s. What is its velocity at t = 6.0 s? a (m/s²) as -2 0 2 t(s) 4
Two solid cylindrical rods AB and BC are welded together at B and loaded as shown. Knowing that the average normal stress must not exceed 150 MPa in either rod, determine the smallest allowable values of the diameters d₁ and d2. Take P= 85 kN. P 125 kN B 125 kN C 0.9 m 1.2 m The smallest allowable value of the diameter d₁ is The smallest allowable value of the diameter d₂ is mm. mm.

Chapter 14 Solutions

Physics

Ch. 14.5 - Prob. 14.8PPCh. 14.5 - Prob. 14.9PPCh. 14.6 - Prob. 14.6CPCh. 14.6 - Prob. 14.10PPCh. 14.6 - Prob. 14.11PPCh. 14.8 - Prob. 14.12PPCh. 14.8 - Prob. 14.8CPCh. 14.8 - Prob. 14.13PPCh. 14.8 - Prob. 14.14PPCh. 14.8 - Prob. 14.15PPCh. 14 - Prob. 1CQCh. 14 - Prob. 2CQCh. 14 - 3. Why do lakes and rivers freeze first at their...Ch. 14 - Prob. 4CQCh. 14 - Prob. 5CQCh. 14 - Prob. 6CQCh. 14 - Prob. 7CQCh. 14 - Prob. 8CQCh. 14 - 9. What is the purpose of having fins on an...Ch. 14 - Prob. 10CQCh. 14 - Prob. 11CQCh. 14 - 12. Explain the theory behind the pressure cooker....Ch. 14 - Prob. 13CQCh. 14 - Prob. 14CQCh. 14 - Prob. 15CQCh. 14 - Prob. 16CQCh. 14 - Prob. 17CQCh. 14 - Prob. 18CQCh. 14 - Prob. 19CQCh. 14 - Prob. 20CQCh. 14 - Prob. 21CQCh. 14 - Prob. 22CQCh. 14 - Prob. 23CQCh. 14 - Prob. 24CQCh. 14 - Prob. 25CQCh. 14 - Prob. 26CQCh. 14 - 1. The main loss of heat from Earth is by (a)...Ch. 14 - Prob. 2MCQCh. 14 - Prob. 3MCQCh. 14 - Prob. 4MCQCh. 14 - Prob. 5MCQCh. 14 - Prob. 6MCQCh. 14 - Prob. 7MCQCh. 14 - Prob. 8MCQCh. 14 - Prob. 9MCQCh. 14 - Prob. 10MCQCh. 14 - Prob. 11MCQCh. 14 - Prob. 12MCQCh. 14 - Prob. 1PCh. 14 - Prob. 2PCh. 14 - Prob. 3PCh. 14 - Prob. 4PCh. 14 - Prob. 5PCh. 14 - Prob. 6PCh. 14 - Prob. 7PCh. 14 - Prob. 8PCh. 14 - Prob. 9PCh. 14 - Prob. 10PCh. 14 - Prob. 11PCh. 14 - Prob. 12PCh. 14 - Prob. 13PCh. 14 - Prob. 14PCh. 14 - Prob. 15PCh. 14 - Prob. 16PCh. 14 - Prob. 17PCh. 14 - Prob. 18PCh. 14 - Prob. 19PCh. 14 - Prob. 20PCh. 14 - Prob. 21PCh. 14 - Prob. 22PCh. 14 - Prob. 23PCh. 14 - Prob. 24PCh. 14 - Prob. 25PCh. 14 - Prob. 26PCh. 14 - Prob. 27PCh. 14 - Prob. 28PCh. 14 - Prob. 29PCh. 14 - Prob. 30PCh. 14 - Prob. 31PCh. 14 - Prob. 32PCh. 14 - Prob. 33PCh. 14 - Prob. 34PCh. 14 - Prob. 35PCh. 14 - Prob. 36PCh. 14 - Prob. 37PCh. 14 - Prob. 38PCh. 14 - Prob. 39PCh. 14 - Prob. 40PCh. 14 - Prob. 41PCh. 14 - Prob. 42PCh. 14 - Prob. 43PCh. 14 - Prob. 44PCh. 14 - 45. Is it possible to heat the aluminum of Problem...Ch. 14 - Prob. 46PCh. 14 - Prob. 47PCh. 14 - Prob. 48PCh. 14 - Prob. 49PCh. 14 - Prob. 50PCh. 14 - Prob. 51PCh. 14 - Prob. 52PCh. 14 - Prob. 53PCh. 14 - Prob. 54PCh. 14 - Prob. 55PCh. 14 - Prob. 56PCh. 14 - Prob. 57PCh. 14 - Prob. 58PCh. 14 - Prob. 59PCh. 14 - Prob. 60PCh. 14 - Prob. 61PCh. 14 - Prob. 62PCh. 14 - Prob. 63PCh. 14 - Prob. 64PCh. 14 - Prob. 65PCh. 14 - Prob. 66PCh. 14 - 67. One cross-country skier is wearing a down...Ch. 14 - Prob. 68PCh. 14 - Prob. 69PCh. 14 - Prob. 70PCh. 14 - Prob. 71PCh. 14 - Prob. 72PCh. 14 - Prob. 73PCh. 14 - Prob. 74PCh. 14 - Prob. 75PCh. 14 - Prob. 76PCh. 14 - 77. A tungsten filament in a lamp is heated to a...Ch. 14 - Prob. 78PCh. 14 - Prob. 79PCh. 14 - Prob. 80PCh. 14 - Prob. 81PCh. 14 - Prob. 82PCh. 14 - Prob. 83PCh. 14 - Prob. 84PCh. 14 - Prob. 85PCh. 14 - Prob. 86PCh. 14 - Prob. 87PCh. 14 - Prob. 88PCh. 14 - Prob. 89PCh. 14 - Prob. 90PCh. 14 - Prob. 91PCh. 14 - Prob. 92PCh. 14 - Prob. 93PCh. 14 - Prob. 94PCh. 14 - Prob. 95PCh. 14 - Prob. 96PCh. 14 - Prob. 97PCh. 14 - Prob. 98PCh. 14 - Prob. 99PCh. 14 - Prob. 100PCh. 14 - Prob. 101PCh. 14 - Prob. 102PCh. 14 - Prob. 103PCh. 14 - Prob. 104PCh. 14 - Prob. 105PCh. 14 - Prob. 106PCh. 14 - Prob. 107PCh. 14 - Prob. 108PCh. 14 - Prob. 109PCh. 14 - Prob. 110PCh. 14 - Prob. 111PCh. 14 - Prob. 112PCh. 14 - Prob. 113PCh. 14 - Prob. 114PCh. 14 - Prob. 115PCh. 14 - 116. It requires 17.10 kJ to melt 1.00 × 102 g of...Ch. 14 - Prob. 117PCh. 14 - Prob. 118PCh. 14 - Prob. 119PCh. 14 - Prob. 120PCh. 14 - Prob. 121PCh. 14 - Prob. 122PCh. 14 - Prob. 123PCh. 14 - Prob. 124P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON