Elementary Statistics 2nd Edition
Elementary Statistics 2nd Edition
2nd Edition
ISBN: 9781259724275
Author: William Navidi, Barry Monk
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 14, Problem 11RE
To determine

To find: The pairs of means which are different by Tukey-Kramer test.

Expert Solution & Answer
Check Mark

Answer to Problem 11RE

The pairs of means which are different by Tukey-Kramer test are 1,2 and 1,3 .

Explanation of Solution

Given information:

The value of α is 0.05 and the given data is,

    PlantConcentration
    A438619732638  
    B857101411538831053 
    C9257861179786  
    D893891917695675595

Calculation:

The sample size are 4 and n1=4,n2=5,n3=4,n4=6 .

The total number in all the samples combined is,

  N=4+5+4+6=19

From the given data the sample means are,

  x1¯=438+619+732+6384=606.75x2¯=857+1014+1153+883+10535=992

Further solve,

  x3¯=925+786+1179+7864=919x4¯=893+891+917+695+675+5956=777.6667

The grand mean is,

  x¯¯=606.75+992+919+777.66674=823.8542

The value of i=14x1i2 is,

  i=14x 1i2=4382+6192+7322+6382=1517873

The standard of deviation of sample 1 is,

  s12=1n11( i=1 4 x 1i 2 n1 x 1 2 ¯)=141(15178734 ( 606.75 )2)s1=368145.5625

The value of i=15x2i2 is,

  i=15x 2i2=8572+10142+11532+8832+10532=4980552

The standard of deviation of sample 2 is,

  s22=1n21( i=1 5 x 2i 2 n2 x 2 2 ¯)=151(49805525 ( 992 )2)s2=122.711

The value of i=14x3i2 is,

  i=14x 3i2=9252+7862+11792+7862=3481258

The standard of deviation of sample 3 is,

  s32=1n31( i=1 4 x 3i 2 n3 x 3 2 ¯)=141(34812584 ( 919 )2)s3=185.3052

The value of i=16x4i2 is,

  i=16x 4i2=8932+8912+9172+6952+6752+5952=3724894

The standard of deviation of sample 4 is,

  s42=1n41( i=1 6 x 4i 2 n4 x 4 2 ¯)=161(37248946 ( 777.6667 )2)s4=138.7811

The treatment sum of squares is,

  SSTr=n1( x 1 ¯ x ¯ ¯)2+n2( x 2 ¯ x ¯¯)2+n3( x 3¯x¯¯)2+n4(x4¯x¯¯)2=4(606.75823.8542)2+5(992823.8542)2+4(919823.8542)2+6(777.6667823.8542)2=378912.5897

The error sum square is,

  SSE=(n11)s12+(n21)s22+(n31)s32+(n41)s42=(41)(15096.9167)+(51)(15058)+(41)(34338)+(61)(19260.2044)=304837.7721

The degree of freedom for treatment sum of square is,

  I1=41=3

The degree of freedom for error sum of square is,

  NI=194=15

The treatment mean sum of square is,

  MSTr=SSTrI1=378912.58973=126304.1966

The error mean sum of square is,

  MSE=SSENI=304837.772115=20322.5181

The mean of 1 and 2 sample is,

  q1,2=| x 1 ¯ x 2 ¯| MSE 2 ( 1 n 1 + 1 n 2 )=|606.75992| 20322.5181 2 ( 1 4 + 1 5 )=5.6972

The mean of 1 and 3 sample is,

  q1,3=| x 1 ¯ x 3 ¯| MSE 2 ( 1 n 1 + 1 n 3 )=|606.75919| 20322.5181 2 ( 1 4 + 1 4 )=4.3807

The mean of 1 and 4 sample is,

  q1,4=| x 1 ¯ x 4 ¯| MSE 2 ( 1 n 1 + 1 n 4 )=|606.75777.6667| 20322.5181 2 ( 1 4 + 1 6 )=2.6266

The mean of 2 and 3 sample is,

  q2,3=| x 2 ¯ x 3 ¯| MSE 2 ( 1 n 2 + 1 n 3 )=|992919| 20322.5181 2 ( 1 5 + 1 4 )=1.07955

The mean of 2 and 4 sample is,

  q2,4=| x 2 ¯ x 4 ¯| MSE 2 ( 1 n 2 + 1 n 4 )=|992777.6667| 20322.5181 2 ( 1 5 + 1 6 )=3.5112

The mean of 3 and 4 sample is,

  q3,4=| x 3 ¯ x 4 ¯| MSE 2 ( 1 n 3 + 1 n 4 )=|919777.6667| 20322.5181 2 ( 1 4 + 1 6 )=2.1720

The critical value q for the student zed range distribution at α=0.05 level of significance is 4.08 .

The comparison of pairwise test statistic values with critical values is shown in table below.

    MeansTest statisticCritical valueDecision
    1,25.69724.08reject null hypothesis.
    1,34.38074.08reject null hypothesis.
    1,42.62664.08Do not reject null hypothesis.
    2,31.079554.08Do not reject null hypothesis.
    2,43.51124.08Do not reject null hypothesis.
    3,42.17204.08Do not reject null hypothesis.

Therefore, the pairs of means which are different by Tukey-Kramer test are 1,2 and 1,3 .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Please could you explain why 0.5 was added to each upper limpit of the intervals.Thanks
28. (a) Under what conditions do we say that two random variables X and Y are independent? (b) Demonstrate that if X and Y are independent, then it follows that E(XY) = E(X)E(Y); (e) Show by a counter example that the converse of (ii) is not necessarily true.
1. Let X and Y be random variables and suppose that A = F. Prove that Z XI(A)+YI(A) is a random variable.

Chapter 14 Solutions

Elementary Statistics 2nd Edition

Ch. 14.1 - Pesticide danger: One of the factors that...Ch. 14.1 - Life-saving drug: Penicillin is produced by the...Ch. 14.1 - Pesticide danger: Using the data in Exercise 17,...Ch. 14.1 - Life-saving drug: Using the data in Exercise 18,...Ch. 14.1 - Artificial hips: Artificial hip joints consist of...Ch. 14.1 - Floods: Rapid drainage of floodwater is crucial to...Ch. 14.1 - Artificial hips: Using the data in Exercise 21,...Ch. 14.1 - Floods: Using the data in Exercise 22, perform the...Ch. 14.1 - Polluting power plants: Power plants can emit...Ch. 14.1 - Prob. 26ECh. 14.1 - Prob. 27ECh. 14.1 - Prob. 28ECh. 14.1 - Prob. 29ECh. 14.1 - Prob. 30ECh. 14.1 - Prob. 31ECh. 14.2 - Prob. 5ECh. 14.2 - Prob. 6ECh. 14.2 - Prob. 7ECh. 14.2 - Prob. 8ECh. 14.2 - In a two-way ANOVA, the P-value for interactions...Ch. 14.2 - Prob. 10ECh. 14.2 - Prob. 11ECh. 14.2 - Prob. 12ECh. 14.2 - Prob. 13ECh. 14.2 - Prob. 14ECh. 14.2 - Prob. 15ECh. 14.2 - Prob. 16ECh. 14.2 - Prob. 17ECh. 14.2 - Prob. 18ECh. 14.2 - Prob. 19ECh. 14.2 - Prob. 20ECh. 14.2 - Prob. 21ECh. 14.2 - Prob. 22ECh. 14.2 - Prob. 23ECh. 14.2 - Strong beams: The following table presents...Ch. 14.2 - Prob. 25ECh. 14.2 - Prob. 26ECh. 14.2 - Fruit yields: An agricultural scientist performed...Ch. 14.2 - Prob. 28ECh. 14.2 - Prob. 29ECh. 14 - Exercises 1-4 refer to the following data: At a...Ch. 14 - Prob. 2CQCh. 14 - Prob. 3CQCh. 14 - Prob. 4CQCh. 14 - Prob. 5CQCh. 14 - Prob. 6CQCh. 14 - Prob. 7CQCh. 14 - Prob. 8CQCh. 14 - Prob. 9CQCh. 14 - Prob. 10CQCh. 14 - Prob. 1RECh. 14 - Prob. 2RECh. 14 - Prob. 3RECh. 14 - Prob. 4RECh. 14 - Prob. 5RECh. 14 - Prob. 6RECh. 14 - Prob. 7RECh. 14 - Prob. 8RECh. 14 - Prob. 9RECh. 14 - Prob. 10RECh. 14 - Prob. 11RECh. 14 - Prob. 12RECh. 14 - Prob. 13RECh. 14 - Prob. 14RECh. 14 - Prob. 15RECh. 14 - Prob. 1WAICh. 14 - Prob. 2WAICh. 14 - Prob. 3WAICh. 14 - Prob. 4WAICh. 14 - Prob. 5WAICh. 14 - Prob. 1CSCh. 14 - Prob. 2CSCh. 14 - Prob. 3CSCh. 14 - Prob. 4CS
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
Text book image
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Text book image
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Text book image
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
Text book image
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Statistics 4.1 Point Estimators; Author: Dr. Jack L. Jackson II;https://www.youtube.com/watch?v=2MrI0J8XCEE;License: Standard YouTube License, CC-BY
Statistics 101: Point Estimators; Author: Brandon Foltz;https://www.youtube.com/watch?v=4v41z3HwLaM;License: Standard YouTube License, CC-BY
Central limit theorem; Author: 365 Data Science;https://www.youtube.com/watch?v=b5xQmk9veZ4;License: Standard YouTube License, CC-BY
Point Estimate Definition & Example; Author: Prof. Essa;https://www.youtube.com/watch?v=OTVwtvQmSn0;License: Standard Youtube License
Point Estimation; Author: Vamsidhar Ambatipudi;https://www.youtube.com/watch?v=flqhlM2bZWc;License: Standard Youtube License