
EBK STARTING OUT WITH PROGRAMMING LOGIC
4th Edition
ISBN: 8220100659386
Author: GADDIS
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 1.4, Problem 1.16CP
Program Plan Intro
CPU (Central Processing Unit):
- CPU is a part of the computer which actually runs the
program . - It is the most important component because without CPU, we cannot run any software.
- In olden days, they were like huge devices which were made up of electrical and
mechanical components like vacuum tubes and switches. - ENIAC (Electronic Numerical Integrator and Calculator) is considered as the world’s first programmable electronic computer which is 8 feet tall and 100 feet long.
- But, nowadays it is replaced by microprocessors.
Operations performed by CPU:
It performs operations such as,
- Reading a piece of data.
- Performing operations such as addition, multiplication, subtraction, and division of numbers.
- Moving a piece of data from one location to another location.
These operations can be performed with the help of 0’s and 1’s. This is because CPU can understand only the instructions that are written in machine language.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
I need help fixing the minor issue where the text isn't in the proper place, and to ensure that the frequency cutoff is at the right place.
My code:
% Define frequency range for the plot
f = logspace(1, 5, 500); % Frequency range from 10 Hz to 100 kHz
w = 2 * pi * f; % Angular frequency
% Parameters for the filters - let's adjust these to get more reasonable cutoffs
R = 1e3; % Resistance in ohms (1 kΩ)
C = 1e-6; % Capacitance in farads (1 μF)
% For bandpass, we need appropriate L value for desired cutoffs
L = 0.1; % Inductance in henries - adjusted for better bandpass response
% Calculate cutoff frequencies first to verify they're in desired range
f_cutoff_RC = 1 / (2 * pi * R * C);
f_resonance = 1 / (2 * pi * sqrt(L * C));
Q_factor = (1/R) * sqrt(L/C);
f_lower_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) + 1/(2*Q_factor));
f_upper_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) - 1/(2*Q_factor));
% Transfer functions
% Low-pass filter (RC)
H_low = 1 ./ (1 + 1i * w *…
My code is experincing minor issue where the text isn't in the proper place, and to ensure that the frequency cutoff is at the right place.
My code:
% Define frequency range for the plot
f = logspace(1, 5, 500); % Frequency range from 10 Hz to 100 kHz
w = 2 * pi * f; % Angular frequency
% Parameters for the filters - let's adjust these to get more reasonable cutoffs
R = 1e3; % Resistance in ohms (1 kΩ)
C = 1e-6; % Capacitance in farads (1 μF)
% For bandpass, we need appropriate L value for desired cutoffs
L = 0.1; % Inductance in henries - adjusted for better bandpass response
% Calculate cutoff frequencies first to verify they're in desired range
f_cutoff_RC = 1 / (2 * pi * R * C);
f_resonance = 1 / (2 * pi * sqrt(L * C));
Q_factor = (1/R) * sqrt(L/C);
f_lower_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) + 1/(2*Q_factor));
f_upper_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) - 1/(2*Q_factor));
% Transfer functions
% Low-pass filter (RC)
H_low = 1 ./ (1 + 1i * w *…
I would like to know the main features about the following three concepts:
1. Default forwarded
2. WINS Server
3. IP Security (IPSec).
Chapter 1 Solutions
EBK STARTING OUT WITH PROGRAMMING LOGIC
Ch. 1.2 - What is a program?Ch. 1.2 - What is hardware?Ch. 1.2 - List the five major components of a computer...Ch. 1.2 - What part of the computer actually runs programs?Ch. 1.2 - Prob. 1.5CPCh. 1.2 - Prob. 1.6CPCh. 1.2 - Prob. 1.7CPCh. 1.2 - Prob. 1.8CPCh. 1.3 - What amount of memory is enough to store a letter...Ch. 1.3 - Prob. 1.10CP
Ch. 1.3 - Prob. 1.11CPCh. 1.3 - Prob. 1.12CPCh. 1.3 - Prob. 1.13CPCh. 1.3 - Prob. 1.14CPCh. 1.4 - A CPU understands instructions that are written...Ch. 1.4 - Prob. 1.16CPCh. 1.4 - When a CPU executes the instructions in a program,...Ch. 1.4 - What is assembly language?Ch. 1.4 - What type of programming language allows you to...Ch. 1.4 - Prob. 1.20CPCh. 1.4 - What do you call a program that translates a...Ch. 1.4 - What do you call a program that both translates...Ch. 1.4 - Prob. 1.23CPCh. 1.5 - Prob. 1.24CPCh. 1.5 - Prob. 1.25CPCh. 1.5 - Word processing programs, spreadsheet programs,...Ch. 1 - A(n) _______ is a set of instructions that a...Ch. 1 - Prob. 2MCCh. 1 - Prob. 3MCCh. 1 - Today, CPUs are small chips known as ____. a....Ch. 1 - Prob. 5MCCh. 1 - Prob. 6MCCh. 1 - Prob. 7MCCh. 1 - Prob. 8MCCh. 1 - Prob. 9MCCh. 1 - Prob. 10MCCh. 1 - Prob. 11MCCh. 1 - In a(n) ______ numbering system, all numeric...Ch. 1 - A bit that is turned off represents the following...Ch. 1 - Prob. 14MCCh. 1 - Prob. 15MCCh. 1 - Prob. 16MCCh. 1 - Prob. 17MCCh. 1 - Prob. 18MCCh. 1 - Prob. 19MCCh. 1 - Prob. 20MCCh. 1 - Computers can only execute programs that are...Ch. 1 - Prob. 22MCCh. 1 - The words that make up a high-level programming...Ch. 1 - Prob. 24MCCh. 1 - A(n) _______ program translates a high-level...Ch. 1 - Today, CPUs are huge devices made of electrical...Ch. 1 - Prob. 2TFCh. 1 - Any piece of data that is stored in a computers...Ch. 1 - Prob. 4TFCh. 1 - Machine language is the only language that a CPU...Ch. 1 - Assembly language is considered a high-level...Ch. 1 - An interpreter is a program that both translates...Ch. 1 - A syntax error does not prevent a program from...Ch. 1 - Prob. 9TFCh. 1 - Word processing programs, spreadsheet programs,...Ch. 1 - Why is the CPU the most important component in a...Ch. 1 - Prob. 2SACh. 1 - Prob. 3SACh. 1 - What are the words that make up a high-level...Ch. 1 - What are the short words that are used in assembly...Ch. 1 - What is the difference between a compiler and an...Ch. 1 - Prob. 7SACh. 1 - Prob. 1ECh. 1 - Use what you've learned about the binary numbering...Ch. 1 - Prob. 3ECh. 1 - Use the Web to research the history of the BASIC,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- map the following ER diagram into a relational database schema diagram. you should take into account all the constraints in the ER diagram. Underline the primary key of each relation, and show each foreign key as a directed arrow from the referencing attributes (s) to the referenced relation. NOTE: Need relational database schema diagramarrow_forwardWhat is business intelligence? Share the Business intelligence (BI) tools you have used and explain what types of decisions you made.arrow_forwardI need help fixing the minor issue where the text isn't in the proper place, and to ensure that the frequency cutoff is at the right place. My code: % Define frequency range for the plot f = logspace(1, 5, 500); % Frequency range from 10 Hz to 100 kHz w = 2 * pi * f; % Angular frequency % Parameters for the filters - let's adjust these to get more reasonable cutoffs R = 1e3; % Resistance in ohms (1 kΩ) C = 1e-6; % Capacitance in farads (1 μF) % For bandpass, we need appropriate L value for desired cutoffs L = 0.1; % Inductance in henries - adjusted for better bandpass response % Calculate cutoff frequencies first to verify they're in desired range f_cutoff_RC = 1 / (2 * pi * R * C); f_resonance = 1 / (2 * pi * sqrt(L * C)); Q_factor = (1/R) * sqrt(L/C); f_lower_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) + 1/(2*Q_factor)); f_upper_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) - 1/(2*Q_factor)); % Transfer functions % Low-pass filter (RC) H_low = 1 ./ (1 + 1i * w *…arrow_forward
- Task 3. i) Compare your results from Tasks 1 and 2. j) Repeat Tasks 1 and 2 for 500 and 5,000 elements. k) Summarize run-time results in the following table: Time/size n String StringBuilder 50 500 5,000arrow_forwardCan you please solve this without AIarrow_forward1. Create a Vehicle.java file. Implement the public Vehicle and Car classes in Vehicle.java, including all the variables and methods in the UMLS. Vehicle - make: String model: String -year: int + Vehicle(String make, String, model, int, year) + getMake(): String + setMake(String make): void + getModel(): String + setModel(String model): void + getYear(): int + set Year(int year): void +toString(): String Car - numDoors: int + numberOfCar: int + Car(String make, String, model, int, year, int numDoors) + getNumDoors(): int + setNumDoors (int num Doors): void + toString(): String 2. Create a CarTest.java file. Implement a public CarTest class with a main method. In the main method, create one Car object and print the object using System.out.println(). Then, print the numberOfCar. Your printing result must follow the example output: make Toyota, model=Camry, year=2022 numDoors=4 1 Hint: You need to modify the toString methods in the Car class and Vehicle class!arrow_forward
- CHATGPT GAVE ME WRONG ANSWER PLEASE HELParrow_forwardHELP CHAT GPT GAVE ME WRONG ANSWER Consider the following implementation of a container that will be used in a concurrent environment. The container is supposed to be used like an indexed array, but provide thread-safe access to elements. struct concurrent_container { // Assume it’s called for any new instance soon before it’s ever used void concurrent_container() { init_mutex(&lock); } ~concurrent_container() { destroy_mutex(&lock); } // Returns element by its index. int get(int index) { lock.acquire(); if (index < 0 || index >= size) { return -1; } int result = data[index]; lock.release(); return result; } // Sets element by its index. void set(int index, int value) { lock.acquire(); if (index < 0 || index >= size) { resize(size); } data[index] = value; lock.release(); } // Extend maximum capacity of the…arrow_forwardWrite a C program using embedded assembler in which you use your own function to multiply by two without using the product. Tip: Just remember that multiplying by two in binary means shifting the number one place to the left. You can use the sample program from the previous exercise as a basis, which increments a variable. Just replace the INC instruction with SHL.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Systems ArchitectureComputer ScienceISBN:9781305080195Author:Stephen D. BurdPublisher:Cengage LearningPrinciples of Information Systems (MindTap Course...Computer ScienceISBN:9781285867168Author:Ralph Stair, George ReynoldsPublisher:Cengage LearningEnhanced Discovering Computers 2017 (Shelly Cashm...Computer ScienceISBN:9781305657458Author:Misty E. Vermaat, Susan L. Sebok, Steven M. Freund, Mark Frydenberg, Jennifer T. CampbellPublisher:Cengage Learning
- Microsoft Visual C#Computer ScienceISBN:9781337102100Author:Joyce, Farrell.Publisher:Cengage Learning,Principles of Information Systems (MindTap Course...Computer ScienceISBN:9781305971776Author:Ralph Stair, George ReynoldsPublisher:Cengage Learning

Systems Architecture
Computer Science
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Cengage Learning

Principles of Information Systems (MindTap Course...
Computer Science
ISBN:9781285867168
Author:Ralph Stair, George Reynolds
Publisher:Cengage Learning

Enhanced Discovering Computers 2017 (Shelly Cashm...
Computer Science
ISBN:9781305657458
Author:Misty E. Vermaat, Susan L. Sebok, Steven M. Freund, Mark Frydenberg, Jennifer T. Campbell
Publisher:Cengage Learning

Microsoft Visual C#
Computer Science
ISBN:9781337102100
Author:Joyce, Farrell.
Publisher:Cengage Learning,

Principles of Information Systems (MindTap Course...
Computer Science
ISBN:9781305971776
Author:Ralph Stair, George Reynolds
Publisher:Cengage Learning