MECHANICS OF MATERIALS
11th Edition
ISBN: 9780137605521
Author: HIBBELER
Publisher: RENT PEARS
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13.5, Problem 49P
The aluminium column is fixed at the bottom and free at the top. Determine the maximum force P that can be applied at A without causing it to buckle or yield. Use a factor of safety of 3 with respect to buckling and yielding. Eal = 70 GPa, σY = 95 MPa.
Prob. 13−49
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The wide-flange A992 steel column has the cross section shown. If it is fixed at the bottom and free at the top, determine if the column will buckle or yield when the load P = 10 kN is applied at A. Use a factor of safety of 3 with respect to buckling and yielding.
The wide-flange A992 steel column has the cross section shown. If it is fixed at the bottom and free at the top, determine the maximum force P that can be applied at A without causing it to buckle or yield. Use a factor of safetyof 3 with respect to buckling and yielding.
The A992 steel bar AB has a square cross section. If it is pin connected at its ends, determine the maximum allowable load P that can be applied to the frame. Use a factor of safety with respect to buckling of 2.
Chapter 13 Solutions
MECHANICS OF MATERIALS
Ch. 13.3 - A 50-in long steel rod has a diameter of 1 in....Ch. 13.3 - A 12-ft wooden rectangular column has the...Ch. 13.3 - The A992 steel column can be considered pinned at...Ch. 13.3 - A steel pipe is fixed supported at its ends. If it...Ch. 13.3 - Determine the maximum force P that can be...Ch. 13.3 - The A992 steel rod BC has a diameter of 50 mm and...Ch. 13.3 - Determine the critical buckling load for the...Ch. 13.3 - The 10-ft wooden rectangular column has the...Ch. 13.3 - The 10-fl wooden column has the dimensions shown....Ch. 13.3 - Determine the maximum force P that can be applied...
Ch. 13.3 - Prob. 34PCh. 13.3 - Prob. 35PCh. 13.3 - The members of the truss are assumed to be pin...Ch. 13.3 - Solve Prob. 1336 for member AB, which has a radius...Ch. 13.3 - Prob. 40PCh. 13.3 - The ideal column has a weight w (force/length) and...Ch. 13.3 - The ideal column is subjected to the force F at...Ch. 13.3 - The column with constant El has the end...Ch. 13.3 - Consider an ideal column as in Fig.13-10 c, having...Ch. 13.3 - Consider an ideal column as in Fig. 13-10d, having...Ch. 13.5 - The aluminium column is fixed at the bottom and...Ch. 13.5 - Prob. 50PCh. 13.5 - Prob. 51PCh. 13.5 - The aluminum rod is fixed at its base and free and...Ch. 13.5 - Assume that the wood column is pin connected at...Ch. 13.5 - Prob. 54PCh. 13.5 - Prob. 59PCh. 13.5 - The wood column is pinned at its base and top. If...Ch. 13.5 - The brass rod is fixed at one end and free at the...Ch. 13.5 - The brass rod is fixed at one end and free at the...Ch. 13.5 - Prob. 65PCh. 13.5 - The W14 53 structural A992 steel column is fixed...Ch. 13.5 - The W14 53 column is fixed at its base and free...Ch. 13.5 - The stress-strain diagram for the material of a...Ch. 13.5 - Construct the buckling curve, P/A versus L/ r, for...Ch. 13.5 - The stress-strain diagram of the material can be...Ch. 13.5 - The stress-strain diagram of the material can be...Ch. 13.6 - Using the AISC equations, select from AppendixB...Ch. 13.6 - Take Y = 50 ksi.Ch. 13.6 - Using the AISC equations, select from AppendixB...Ch. 13.6 - Prob. 83PCh. 13.6 - Using the AISC equations, select from AppendixB...Ch. 13.6 - Prob. 97PCh. 13.6 - Prob. 98PCh. 13.6 - The tube is 0.25 in. thick, is made of 2014-T6...Ch. 13.6 - Prob. 100PCh. 13.6 - A rectangular wooden column has the cross section...Ch. 13.6 - Prob. 102PCh. 13.7 - The W8 15 wide-flange A-36 steel column is...Ch. 13.7 - Prob. 110PCh. 13.7 - A 20-ft-long column is made of aluminum alloy...Ch. 13.7 - A 20-ft-long column is made of aluminum alloy...Ch. 13.7 - The 2014-T6 aluminum hollow column is fixed at its...Ch. 13.7 - The 2014-T6 aluminum hollow column is fixed at its...Ch. 13 - The wood column has a thickness of 4 in. and a...Ch. 13 - The wood column has a thickness of 4 in. and a...Ch. 13 - A steel column has a length of 5 m and is free at...Ch. 13 - The square structural A992 steel tubing has outer...Ch. 13 - If the A-36 steel solid circular rod BD has a...Ch. 13 - If P = 15 kip, determine the required minimum...Ch. 13 - The steel pipe is fixed supported at its ends. If...Ch. 13 - The W200 46 wide-flange A992-steel column can be...Ch. 13 - The wide-flange A992 steel column has the cross...Ch. 13 - The wide-flange A992 steel column has the cross...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The distributed load is supported by two pin-connected columns, each having a solid circular cross- section. If AB is made up of aluminum and CD of steel, determine the required diameter of each column so that both will buckle at the same time. (Esteel = 200 GPa, Sy,steel = 250 MPa, Eal = 70 GPa and Sy,al = 100 MPa). 18 kN/m 3 m 0.75 m 0.75 marrow_forwardDetermine the maximum allowable load P that can be applied to member BC without causing member AB to buckle. Assume that AB is made of steel and is pinned at its ends for x–x axis buckling and fixed at its ends for y–y axisbuckling. Use a factor of safety with respect to buckling of F.S. = 3. Est = 200 GPa, sY = 360 MPa.arrow_forwardThe steel pipe is fixed supported at its ends. If it is 4 m long and has an outer diameter of 50 mm, determine its required thickness so that it can support an axial load of P = 100 kN without buckling. Est = 200 GPa, sY = 250 MPa.arrow_forward
- The 50-mm-diameter C86100 bronze rod is fixed supported at A and has a gap of 2 mm from the wall at B. Determine the increase in temperature ΔT that will cause the rod to buckle. Assume that the contact at B acts as a pin.arrow_forwardThe 46-mm-diameter C86100 bronze rod is fixed supported at A and has a gap of 2 mm from the wall at B. Part A AT = μÀ Determine the increase in temperature AT that will cause the rod to buckle. Assume that the contact at B acts as a pin. Use Ebr 103 GPa Express your answer to three significant figures and include appropriate units. Value Submit Request Answer Units Im ? R 2 mm.arrow_forwardThe wood column is pinned at its base and top. If L = 5 ft, determine the maximum eccentric load P that can be applied without causing the column to buckle or yield. Ew = 1.8(103) ksi, sY = 8 ksi.arrow_forward
- 6 m 13-7. The W360 x 57 column is made of A-36 steel and is fixed supported at its base. If it is subjected to an axial load of P = 75 kN, determine the factor of safety with respect to buckling. *13-8. The W360 x 57 column is made of A-36 steel. Determine the critical load if its bottom end is fixed supported and its top is free to move about the strong axis and is pinned about the weak axis.arrow_forwardDetermine if the frame can support a load of P = 20 kN if the factor of safety with respect to buckling of member AB is F.S. = 3. Assume that AB is made of steel and is pinned at its ends for x–x axis buckling and fixed at its ends for y–y axis buckling. Est = 200 GPa, sY = 360 MPa.arrow_forwardThe W12 * 50 is made of A992 steel and is used as a column that has a length of 20 ft. If its ends are assumed pin supported, and it is subjected to an axial load of 150 kip, determine the factor of safety with respect to buckling.arrow_forward
- A steel pipe is fixed supported at its ends. If it is 5 m long and has an outer diameter of 50 mm and a thickness of 10 mm, determine the maximum axial load P that it can carry without buckling. Est = 200 GPa, sY = 250 MPa.arrow_forwardThe W 10X30 wide flange A992 steel column can be assumed fixed at both ends. Determine the largest axial force P that can be applied without causing it to buckle.arrow_forwardR17-10. The wide-flange A992 steel column has the cross section shown. If it is fixed at the bottom and free at the top, determine if the column will buckle or yield when the load P = 10 kN is applied at A. Use a factor of safety of 3 with respect to buckling and yielding. -20 mm 150 mm 패-10mm 10 mm 100 mm 4 m 100 mm 10 mmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Column buckling; Author: Amber Book;https://www.youtube.com/watch?v=AvvaCi_Nn94;License: Standard Youtube License