Calculus For The Life Sciences
2nd Edition
ISBN: 9780321964038
Author: GREENWELL, Raymond N., RITCHEY, Nathan P., Lial, Margaret L.
Publisher: Pearson Addison Wesley,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13.3, Problem 3E
To determine
(a)
To find:
The mean of the distribution.
To determine
(b)
To find:
The standard deviation of the distribution.
To determine
(c)
To find:
The probability that the random variable is between the mean and one standard deviation above the mean.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The lifetime X in hours of an electronic tube is a random variable
having a probability density function given by
f(r) = re, I
(a) Compute the expected lifetime of such a tube.
(b) Compute the variance of the lifetime of such a tube.
(c) Find the median lifetime m of such a tube that satisfies P(X > m) = 0.5.
2. The time (in minutes) required for technicians to perform a specific task is believed to follow an
exponential distribution with probability density function
0.2e-0.2t if t>0
{
f(t) =
0ift<0
(a) What is the mean time required by technicians to perform the task and its variance?
(b) Calculate the probability that a technician can complete the task in less than 7 mi
Post
Radioactive mass 1 emits particles at a mean rate of 1, per second, and radioactive mass 2
emits particles at a mean rate of 2 per second. Mass 1 is selected with probability p, and
mass 2 is selected with probability 1 - p. Let X be the time at which the first particle is
emitted. It can be shown that X has a mixed exponential distribution with probability density
function
SPhieh+(1- p)Àze*
S(x) =
x > 0
a.
Find Hx-
b.
Find the cumulative distribution function of X.
C.
Let 11 = 2, 12 = 1, and p = 0.5. Find P(X < 2).
d.
Let X, = 2, X, = 1, and p = 0.5. Given that P(X < 2), find the probability that mass 1
was selected.
Chapter 13 Solutions
Calculus For The Life Sciences
Ch. 13.1 - Repeat Example 1a for the function f(x)=2x2 on...Ch. 13.1 - Prob. 2YTCh. 13.1 - Prob. 3YTCh. 13.1 - Prob. 1ECh. 13.1 - Prob. 2ECh. 13.1 - Prob. 3ECh. 13.1 - Prob. 4ECh. 13.1 - Prob. 5ECh. 13.1 - Prob. 6ECh. 13.1 - Prob. 7E
Ch. 13.1 - Prob. 8ECh. 13.1 - Prob. 9ECh. 13.1 - Prob. 10ECh. 13.1 - Prob. 11ECh. 13.1 - Prob. 12ECh. 13.1 - Prob. 13ECh. 13.1 - Prob. 14ECh. 13.1 - Prob. 15ECh. 13.1 - Prob. 16ECh. 13.1 - Prob. 17ECh. 13.1 - Prob. 18ECh. 13.1 - Prob. 19ECh. 13.1 - Prob. 20ECh. 13.1 - Prob. 21ECh. 13.1 - Prob. 22ECh. 13.1 - Find the cumulative distribution function for the...Ch. 13.1 - Prob. 24ECh. 13.1 - Prob. 25ECh. 13.1 - Prob. 26ECh. 13.1 - Prob. 27ECh. 13.1 - Prob. 28ECh. 13.1 - Show that each function defined as follows is a...Ch. 13.1 - Prob. 30ECh. 13.1 - Show that each function defined as follows is a...Ch. 13.1 - Prob. 32ECh. 13.1 - Prob. 33ECh. 13.1 - Prob. 34ECh. 13.1 - Prob. 35ECh. 13.1 - Prob. 36ECh. 13.1 - Prob. 45ECh. 13.1 - Prob. 47ECh. 13.1 - Prob. 48ECh. 13.1 - Prob. 49ECh. 13.2 - YOUR TURN 1 Repeat Example 1 for the probability...Ch. 13.2 - Prob. 2YTCh. 13.2 - Prob. 3YTCh. 13.2 - In Exercises 1-8, a probability density function...Ch. 13.2 - Prob. 2ECh. 13.2 - Prob. 3ECh. 13.2 - Prob. 4ECh. 13.2 - Prob. 5ECh. 13.2 - Prob. 6ECh. 13.2 - Prob. 7ECh. 13.2 - Prob. 8ECh. 13.2 - Prob. 9ECh. 13.2 - Prob. 10ECh. 13.2 - Prob. 11ECh. 13.2 - Prob. 12ECh. 13.2 - Prob. 13ECh. 13.2 - Prob. 14ECh. 13.2 - Prob. 15ECh. 13.2 - Prob. 16ECh. 13.2 - Prob. 17ECh. 13.2 - Prob. 18ECh. 13.2 - Prob. 19ECh. 13.2 - Prob. 20ECh. 13.2 - Prob. 21ECh. 13.2 - Prob. 22ECh. 13.2 - Prob. 23ECh. 13.2 - Prob. 24ECh. 13.2 - Length of a leaf The length of a leaf on a tree is...Ch. 13.2 - Prob. 26ECh. 13.2 - Prob. 30ECh. 13.2 - Prob. 31ECh. 13.2 - Prob. 33ECh. 13.2 - Prob. 34ECh. 13.2 - Prob. 35ECh. 13.2 - Prob. 36ECh. 13.2 - Prob. 37ECh. 13.2 - Prob. 39ECh. 13.2 - Prob. 40ECh. 13.3 - YOUR TURN Repeat Example 2 for a flashlight...Ch. 13.3 - Prob. 1ECh. 13.3 - Prob. 2ECh. 13.3 - Prob. 3ECh. 13.3 - Prob. 4ECh. 13.3 - Prob. 5ECh. 13.3 - Prob. 6ECh. 13.3 - Prob. 7ECh. 13.3 - Prob. 8ECh. 13.3 - Prob. 9ECh. 13.3 - Prob. 10ECh. 13.3 - Prob. 11ECh. 13.3 - Prob. 12ECh. 13.3 - Prob. 13ECh. 13.3 - Prob. 14ECh. 13.3 - Describe the standard normal distribution. What...Ch. 13.3 - Prob. 16ECh. 13.3 - Suppose a random variable X has the Poisson...Ch. 13.3 - Prob. 19ECh. 13.3 - Prob. 20ECh. 13.3 - Prob. 21ECh. 13.3 - Prob. 22ECh. 13.3 - Prob. 23ECh. 13.3 - Find each of the following probabilities for the...Ch. 13.3 - Prob. 25ECh. 13.3 - Prob. 26ECh. 13.3 - Prob. 27ECh. 13.3 - Prob. 28ECh. 13.3 - Prob. 30ECh. 13.3 - Determine the cumulative distribution function for...Ch. 13.3 - Prob. 36ECh. 13.3 - Prob. 37ECh. 13.3 - Prob. 38ECh. 13.3 - Prob. 39ECh. 13.3 - Pygmy Height The average height of a member of a...Ch. 13.3 - Prob. 41ECh. 13.3 - Prob. 42ECh. 13.3 - Prob. 43ECh. 13.3 - Prob. 44ECh. 13.3 - Prob. 45ECh. 13.3 - Prob. 46ECh. 13.3 - Prob. 47ECh. 13.3 - Prob. 48ECh. 13.3 - Prob. 49ECh. 13.3 - Earthquakes The proportion of the times in days...Ch. 13.3 - Prob. 51ECh. 13.3 - Prob. 52ECh. 13.3 - Prob. 53ECh. 13.3 - Prob. 54ECh. 13.3 - Prob. 55ECh. 13.3 - Printer Failure The lifetime of a printer costing...Ch. 13.3 - Electronic Device The time to failure of a...Ch. 13.CR - Prob. 1CRCh. 13.CR - Prob. 3CRCh. 13.CR - Prob. 4CRCh. 13.CR - Prob. 5CRCh. 13.CR - Prob. 6CRCh. 13.CR - Prob. 7CRCh. 13.CR - Prob. 8CRCh. 13.CR - Prob. 9CRCh. 13.CR - Prob. 10CRCh. 13.CR - Prob. 11CRCh. 13.CR - Prob. 12CRCh. 13.CR - Prob. 13CRCh. 13.CR - Prob. 14CRCh. 13.CR - Prob. 15CRCh. 13.CR - Prob. 16CRCh. 13.CR - Prob. 17CRCh. 13.CR - Prob. 18CRCh. 13.CR - Prob. 19CRCh. 13.CR - Prob. 20CRCh. 13.CR - Prob. 21CRCh. 13.CR - Prob. 22CRCh. 13.CR - Prob. 23CRCh. 13.CR - Prob. 24CRCh. 13.CR - Prob. 25CRCh. 13.CR - Prob. 26CRCh. 13.CR - Prob. 27CRCh. 13.CR - Prob. 28CRCh. 13.CR - Prob. 29CRCh. 13.CR - Prob. 30CRCh. 13.CR - Prob. 31CRCh. 13.CR - Prob. 32CRCh. 13.CR - Prob. 33CRCh. 13.CR - Prob. 34CRCh. 13.CR - Prob. 35CRCh. 13.CR - Prob. 36CRCh. 13.CR - Prob. 39CRCh. 13.CR - Prob. 40CRCh. 13.CR - Prob. 41CRCh. 13.CR - Prob. 42CRCh. 13.CR - Prob. 43CRCh. 13.CR - Prob. 44CRCh. 13.CR - Prob. 45CRCh. 13.CR - Prob. 46CRCh. 13.CR - Prob. 47CRCh. 13.CR - Prob. 48CRCh. 13.CR - Prob. 52CRCh. 13.CR - Prob. 54CRCh. 13.CR - Prob. 55CRCh. 13.CR - Prob. 56CRCh. 13.CR - Prob. 57CRCh. 13.CR - Prob. 58CRCh. 13.CR - Prob. 59CRCh. 13.CR - Prob. 60CRCh. 13.CR - Prob. 61CRCh. 13.CR - Yeast cells The famous statistician William...Ch. 13.CR - Prob. 65CRCh. 13.CR - Equipment Insurance A piece of equipment is being...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Suppose X is a random variable taking values in the interval [0,2] with probability density function f(x) = 1-x/2. What is the variance of X?arrow_forwardx is a gaussian random variable with a PDF as described above, where μ is the mean, σ is the standard deviation , and Fx(X) refers to the cumulative distribution function CDF. It is known that Fx(-4.8) = 0.500 and Fx(1.4)=0.977, what value of Xo do we find the probability Fx(Xo) = P(X<Xo) = 0.159 ? ( Ans = -7.9)arrow_forwardSuppose that the random variable X has the probability density function for - 1s x <1 c(1- x2) f(x) = elsewhere what is the expected value of X A 0.5 -0.5 1arrow_forward
- Suppose that the random variable X has the probability density function f(x) = {" c(1- x2) for - 1s x s1 elsewhere What is the variance of X A 1/2 B 1/3 1/5 D 1/4arrow_forwardFind the mean of random variable of X, if X is random variable with pdf f(x) = c(1-x²), -1arrow_forward4. The lifetime in hours of an electronic gadget is a random variable having a probability density function of x2 0. Compute the expected lifetime of such a gadget. f(x) = xe-2xarrow_forwardThe random variable it denotes the effective rate of interest p.a. from time t - 1 to time t, for t = 1, 2, 3, Each year the value of (1 + i) has a lognormal distribution with parameters µ = 0.06 and o² = 0.08. Calculate the probability that a single investment made at time t = 0 will accumulate to more than double of its initial investment in 10 years' time. Give your answer in three decimal places.arrow_forwarda) A random variable X has an exponential distribution with probability density function given by f(x) = {ledx; for x 2 0 lo ,elsewhere Find the 75th percentile of X. b) A certain brand of light bulb has a lifespan which is exponentially distribution with a mean of 35 days. 1. What is the probability that a randomly selected light bulb of this brand will last more than 45 days? II. If it is known that a light bulb has already lasted more than 25 days, what is the probability that it will at least last for an additional 50 days. (Hint: Memoryless Property) c) Suppose that the amount of time it takes for someone to finish a task, denoted by X, has the uniform distribution between 20 and 80 minutes. 1. Write a suitable probability density function for the time it takes someone to finish the task. II. Using the density function in (1) above derive the mean of X. II. Derive the variance of X using the results obtained in (I) and (I) above. IV. Find the probability that an individual takes…arrow_forward4. "Time headway" In highway traffic flow the elapsed time between the time that one car finishes passing a fixed point and the instant that the next car begins to pass that point is called time headway. Now, let X = the time headway for two randomly chosen consecutive cars on a highway during a period of heavy traffic flow. The following probability density function of X is suggested by traffic experts: f(x) = 0.15*e-0.15(x-0.5) for (x ≥ 0.5 sec) 0 otherwise a. Draw f(x) from x = 0 to x= 10 sec. b. Find P(X ≤ 5 sec) and show it on the figure you have drawn. c. What is E[X] and Var[X] ? d. Find Cumulative Distribution Function of X.arrow_forwardThe probability density function (PDF) of a Gaussian random variable is given by 1 (r-4)2/18 3/27 P&(x)= %3D (a) Fine the mean value and the standard deviation (b) Determine: (a) P(x > 4); (b) P(x > 0); (c) P(x > -2). Use the following approximation for the q-function 1 Qx) =arrow_forward6arrow_forward7arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Continuous Probability Distributions - Basic Introduction; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=QxqxdQ_g2uw;License: Standard YouTube License, CC-BY
Probability Density Function (p.d.f.) Finding k (Part 1) | ExamSolutions; Author: ExamSolutions;https://www.youtube.com/watch?v=RsuS2ehsTDM;License: Standard YouTube License, CC-BY
Find the value of k so that the Function is a Probability Density Function; Author: The Math Sorcerer;https://www.youtube.com/watch?v=QqoCZWrVnbA;License: Standard Youtube License