FD - THINKING MATHEMATICALLY MYMATHLAB
7th Edition
ISBN: 9780135427903
Author: Blitzer
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13.3, Problem 34E
Explain why Hamilton’s method satisfies the quota rule.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q1. A group of five applicants for a pair of identical jobs consists of three men and two
women. The employer is to select two of the five applicants for the jobs. Let S
denote the set of all possible outcomes for the employer's selection. Let A denote
the subset of outcomes corresponding to the selection of two men and B the subset
corresponding to the selection of at least one woman. List the outcomes in A, B,
AUB, AN B, and An B. (Denote the different men and women by M₁, M2, M3
and W₁, W2, respectively.)
For the following function, find the full power series centered at a
of convergence.
0 and then give the first 5 nonzero terms of the power series and the open interval
=
f(2) Σ
8
1(x)--(-1)*(3)*
n=0
₤(x) = + + + ++...
The open interval of convergence is:
1
1
3
f(x)=
=
28
3x6 +1
(Give your answer in help (intervals) .)
Q3 (8 points)
Q3. A survey classified a large number of adults according to whether they were diag-
nosed as needing eyeglasses to correct their reading vision and whether they use
eyeglasses when reading. The proportions falling into the four resulting categories
are given in the following table:
Use Eyeglasses for Reading
Needs glasses Yes
No
Yes
0.44
0.14
No
0.02
0.40
If a single adult is selected from the large group, find the probabilities of the events
defined below. The adult
(a) needs glasses.
(b) needs glasses but does not use them.
(c) uses glasses whether the glasses are needed or not.
Chapter 13 Solutions
FD - THINKING MATHEMATICALLY MYMATHLAB
Ch. 13.1 - CHECK POINT 1 Four candidates are running for...Ch. 13.1 - CHECK POINT 2 Table 13.2 on page 841 shows the...Ch. 13.1 - Prob. 3CPCh. 13.1 - Prob. 4CPCh. 13.1 - CHECK POINT 5 Table 13.2 on page 841 shows the...Ch. 13.1 - Fill in each blank so that the resulting statement...Ch. 13.1 - Fill in each blank so that the resulting statement...Ch. 13.1 - Fill in each blank so that the resulting statement...Ch. 13.1 - Fill in each blank so that the resulting statement...Ch. 13.1 - Fill in each blank so that the resulting statement...
Ch. 13.1 - Prob. 6CVCCh. 13.1 - Fill in each blank so that the resulting statement...Ch. 13.1 - Prob. 8CVCCh. 13.1 - In Exercises 1-2, the preference ballots for three...Ch. 13.1 - In Exercises 1-2, the preference ballots for three...Ch. 13.1 - In Exercises 3-4, four students are running for...Ch. 13.1 - Prob. 4ECh. 13.1 - Your class is given the option of choosing a day...Ch. 13.1 - Prob. 6ECh. 13.1 - Prob. 7ECh. 13.1 - 8. The travel club members are voting for the...Ch. 13.1 - Four professors are running for chair of the...Ch. 13.1 - Prob. 10ECh. 13.1 - Prob. 11ECh. 13.1 - Use the preference table shown in Exercise 8....Ch. 13.1 - Prob. 13ECh. 13.1 - Use the preference table shown in Exercise 10. Who...Ch. 13.1 - Use the preference table shown in Exercise 7....Ch. 13.1 - Use the preference table shown in Exercise 8....Ch. 13.1 - Use the preference table shown in Exercise 9. Who...Ch. 13.1 - Prob. 18ECh. 13.1 - Prob. 19ECh. 13.1 - Prob. 20ECh. 13.1 - In Exercises 19-22, suppose that the pairwise...Ch. 13.1 - Prob. 22ECh. 13.1 - Prob. 23ECh. 13.1 - Prob. 24ECh. 13.1 - Use the preference table shown in Exercise 9. Who...Ch. 13.1 - Prob. 26ECh. 13.1 - In Exercises 27-30, 72 voters are asked to rank...Ch. 13.1 - Prob. 28ECh. 13.1 - In Exercises 27-30, 72 voters are asked to rank...Ch. 13.1 - In Exercises 27-30, 72 voters are asked to rank...Ch. 13.1 - Prob. 31ECh. 13.1 - Prob. 32ECh. 13.1 - Prob. 33ECh. 13.1 - The programmers at the Theater Channel need to...Ch. 13.1 - 35. Five candidates. A, B, C, D, and E, are...Ch. 13.1 - Prob. 36ECh. 13.1 - Prob. 37ECh. 13.1 - Three candidates, A, B, and C, are running for...Ch. 13.1 - What is a preference ballot?Ch. 13.1 - Prob. 40ECh. 13.1 - Prob. 41ECh. 13.1 - 42. Describe the Borda count method. Is it...Ch. 13.1 - What is the plurality-with-elimination method? Why...Ch. 13.1 - What is the pairwise comparison method? Is it...Ch. 13.1 - Prob. 45ECh. 13.1 - Prob. 46ECh. 13.1 - Prob. 47ECh. 13.1 - Prob. 48ECh. 13.1 - Prob. 49ECh. 13.1 - Make Sense? In Exercises 49-52, determine whether...Ch. 13.1 - Make Sense? In Exercises 49-52, determine whether...Ch. 13.1 - Prob. 52ECh. 13.1 - Prob. 53ECh. 13.1 - In Exercises 53-56, construct a preference table...Ch. 13.1 - Prob. 55ECh. 13.1 - In Exercises 53-56, construct a preference table...Ch. 13.1 - 57. Research and present a group report on how...Ch. 13.1 - Research and present a group report on how voting...Ch. 13.2 - CHECK POINT I The 14 members of the school board...Ch. 13.2 - Prob. 2CPCh. 13.2 - CHECK POINT 3 An election with 120 voters and...Ch. 13.2 - Prob. 4CPCh. 13.2 - Fill in each blank so that the resulting statement...Ch. 13.2 - Fill in each blank so that the resulting statement...Ch. 13.2 - Fill in each blank so that the resulting statement...Ch. 13.2 - Prob. 4CVCCh. 13.2 - Prob. 5CVCCh. 13.2 - Fill in each blank so that the resulting statement...Ch. 13.2 - Voters in a small town are considering four...Ch. 13.2 - 2. Fifty-three people are asked to taste-test and...Ch. 13.2 - Prob. 3ECh. 13.2 - Prob. 4ECh. 13.2 - A town is voting on an ordinance dealing with...Ch. 13.2 - A town is voting on an ordinance dealing with...Ch. 13.2 - 7. The following preference table gives the...Ch. 13.2 - Prob. 8ECh. 13.2 - 9. Members of the Student Activity Committee at a...Ch. 13.2 - Prob. 10ECh. 13.2 - Prob. 11ECh. 13.2 - Prob. 12ECh. 13.2 - In Exercises 11-18, the preference table for an...Ch. 13.2 - Prob. 14ECh. 13.2 - In Exercises 11-18, the preference table for an...Ch. 13.2 - In Exercises 11-18, the preference table for an...Ch. 13.2 - In Exercises 11-18, the preference table for an...Ch. 13.2 - Prob. 18ECh. 13.2 - Prob. 19ECh. 13.2 - Describe the majority criterion.Ch. 13.2 - Describe the head-to-head criterion.Ch. 13.2 - Describe the monotonicity criterion.Ch. 13.2 - 23. Describe the irrelevant alternatives...Ch. 13.2 - 24. In your own words, state Arrow’s Impossibility...Ch. 13.2 - Prob. 25ECh. 13.2 - Is it possible to have election results using a...Ch. 13.2 - Prob. 27ECh. 13.2 - Prob. 28ECh. 13.2 - Make Sense? In Exercises 28-31, determine whether...Ch. 13.2 - Prob. 30ECh. 13.2 - Make Sense? In Exercises 28-31, determine whether...Ch. 13.2 - Prob. 32ECh. 13.2 - Prob. 33ECh. 13.2 - Prob. 34ECh. 13.2 - Prob. 35ECh. 13.2 - Citizen-initiated ballot measures often present...Ch. 13.3 - CHECK POINT 1 The Republic of Amador is composed...Ch. 13.3 - CHECK POINT 2 Refer to Check Point 1 on page 865....Ch. 13.3 - Prob. 3CPCh. 13.3 - Prob. 4CPCh. 13.3 - Prob. 5CPCh. 13.3 - Fill in each blank so that the resulting statement...Ch. 13.3 - Fill in each blank so that the resulting statement...Ch. 13.3 - Fill in each blank so that the resulting statement...Ch. 13.3 - Prob. 4CVCCh. 13.3 - Prob. 5CVCCh. 13.3 - Fill in each blank so that the resulting statement...Ch. 13.3 - Fill in each blank so that the resulting statement...Ch. 13.3 - Throughout this Exercise Set, in computing...Ch. 13.3 - Throughout this Exercise Set, in computing...Ch. 13.3 - Throughout this Exercise Set, in computing...Ch. 13.3 - Throughout this Exercise Set, in computing...Ch. 13.3 - A university is composed of five schools. The...Ch. 13.3 - Prob. 6ECh. 13.3 - 7. A small country is composed of five states. A,...Ch. 13.3 - 8. A small country is comprised of four states, A,...Ch. 13.3 - Prob. 9ECh. 13.3 - Prob. 10ECh. 13.3 - The police department in a large city has 180 new...Ch. 13.3 - Prob. 12ECh. 13.3 - Prob. 13ECh. 13.3 - Prob. 14ECh. 13.3 - 15. Twenty sections of bilingual math courses,...Ch. 13.3 - Prob. 16ECh. 13.3 - A rapid transit service operates 200 buses along...Ch. 13.3 - Refer to Exercise 11. Use Webster’s method to...Ch. 13.3 - A hospital has a nursing staff of 250 nurses...Ch. 13.3 - A hospital has a nursing staff of 250 nurses...Ch. 13.3 - A hospital has a nursing staff of 250 nurses...Ch. 13.3 - A hospital has a nursing staff of 250 nurses...Ch. 13.3 - The table shows the 1790 United States census. In...Ch. 13.3 - Prob. 24ECh. 13.3 - Prob. 25ECh. 13.3 - Prob. 26ECh. 13.3 - 27. Describe how to find a standard divisor.
Ch. 13.3 - 28. Describe how to determine a standard quota for...Ch. 13.3 - Prob. 29ECh. 13.3 - Prob. 30ECh. 13.3 - Describe the apportionment problem.Ch. 13.3 - Prob. 32ECh. 13.3 - Prob. 33ECh. 13.3 - Explain why Hamilton’s method satisfies the quota...Ch. 13.3 - Prob. 35ECh. 13.3 - Suppose that you guess at a modified divisor, d,...Ch. 13.3 - Describe the difference between the modified...Ch. 13.3 - In allocating congressional seats, how does...Ch. 13.3 - 39. How are modified quotas rounded using...Ch. 13.3 - Why might it take longer to guess at a modified...Ch. 13.3 - In this Exercise Set, we have used apportionment...Ch. 13.3 - Prob. 42ECh. 13.3 - Make Sense? In Exercises 42-45, determine whether...Ch. 13.3 - Make Sense? In Exercises 42-45, determine whether...Ch. 13.3 - Prob. 45ECh. 13.3 - Prob. 46ECh. 13.3 - Prob. 47ECh. 13.3 - Prob. 48ECh. 13.3 - A small country is composed of three states, A, B,...Ch. 13.3 - Prob. 50ECh. 13.3 - Research and present a group| report on a brief...Ch. 13.4 - CHECK POINT I Table 13.42 shows the populations of...Ch. 13.4 - CHECK POINT 2 A small country has 100 seats in the...Ch. 13.4 - Prob. 3CPCh. 13.4 - Prob. 1CVCCh. 13.4 - Prob. 2CVCCh. 13.4 - Prob. 3CVCCh. 13.4 - Prob. 4CVCCh. 13.4 - 1. The mathematics department has 30 teaching...Ch. 13.4 - 2. A school district has 57 new laptop computers...Ch. 13.4 - 3. The table shows the populations of three states...Ch. 13.4 - The table at the top of the next column shows the...Ch. 13.4 - A small country has 24 seats in the congress,...Ch. 13.4 - Prob. 6ECh. 13.4 - 7. A town has 40 mail trucks and four districts in...Ch. 13.4 - 8. A town has five districts in which mail is...Ch. 13.4 - A corporation has two branches A and B. Each year...Ch. 13.4 - 10. A corporation has three branches, A, B, and C...Ch. 13.4 - Prob. 11ECh. 13.4 - a. A country has three states, state A, with a...Ch. 13.4 - 13. In Exercise 12, use Jefferson’s method with ...Ch. 13.4 - Prob. 14ECh. 13.4 - Prob. 15ECh. 13.4 - What is the new-states paradox?Ch. 13.4 - 17. According to Balinski and Young’s...Ch. 13.4 - Make Sense? In Exercises 18-21, determine whether...Ch. 13.4 - Prob. 19ECh. 13.4 - Prob. 20ECh. 13.4 - Make Sense? In Exercises 18-21, determine whether...Ch. 13.4 - Give an example of a country with three states in...Ch. 13 - 1. The 12 preference ballots for four candidates...Ch. 13 - (In Exercises 2-5, be sure to refer to the...Ch. 13 - (In Exercises 2-5, be sure to refer to the...Ch. 13 - (In Exercises 2-5, be sure to refer to the...Ch. 13 - (In Exercises 2-5, be sure to refer to the...Ch. 13 - Prob. 6RECh. 13 - In Exercises 6-9, the Theater Society members are...Ch. 13 - In Exercises 6-9, the Theater Society members are...Ch. 13 - Prob. 9RECh. 13 - Prob. 10RECh. 13 - Prob. 11RECh. 13 - Prob. 12RECh. 13 - In Exercises 10-13, four candidates, A, B, C, and...Ch. 13 - In Exercises 14-16, voters in a small town are...Ch. 13 - In Exercises 14-16, voters in a small town are...Ch. 13 - Prob. 16RECh. 13 - Prob. 17RECh. 13 - Prob. 18RECh. 13 - Prob. 19RECh. 13 - Use the following preference table to solve...Ch. 13 - Prob. 21RECh. 13 - Prob. 22RECh. 13 - Prob. 23RECh. 13 - Prob. 24RECh. 13 - Use the following preference table, which shows...Ch. 13 - Prob. 26RECh. 13 - Prob. 27RECh. 13 - Prob. 28RECh. 13 - Prob. 29RECh. 13 - Prob. 30RECh. 13 - Prob. 31RECh. 13 - Prob. 32RECh. 13 - Prob. 33RECh. 13 - Prob. 34RECh. 13 - Prob. 35RECh. 13 - Prob. 36RECh. 13 - Prob. 37RECh. 13 - Prob. 38RECh. 13 - In Exercises 37-40, a country is composed of four...Ch. 13 - Prob. 40RECh. 13 - Prob. 41RECh. 13 - A country has 100 seats in the congress, divided...Ch. 13 - Prob. 43RECh. 13 - Is the following statement true or false? There...Ch. 13 - Prob. 1TCh. 13 - In Exercises 1-8, three candidates, A, B, and C,...Ch. 13 - Prob. 3TCh. 13 - Prob. 4TCh. 13 - Prob. 5TCh. 13 - Prob. 6TCh. 13 - Prob. 7TCh. 13 - Prob. 8TCh. 13 - Prob. 9TCh. 13 - Prob. 10TCh. 13 - Prob. 11TCh. 13 - Prob. 12TCh. 13 - Prob. 13TCh. 13 - Prob. 14TCh. 13 - Prob. 15TCh. 13 - Prob. 16TCh. 13 - In Exercises 16-24, an HMO has 10 doctors to be...Ch. 13 - Prob. 18TCh. 13 - Prob. 19TCh. 13 - Prob. 20TCh. 13 - Prob. 21TCh. 13 - Prob. 22TCh. 13 - Prob. 23TCh. 13 - Prob. 24TCh. 13 - Prob. 25T
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- 4. (i) Let a discrete sample space be given by N = {W1, W2, W3, W4}, and let a probability measure P on be given by P(w1) = 0.2, P(w2) = 0.2, P(w3) = 0.5, P(wa) = 0.1. Consider the random variables X1, X2 → R defined by X₁(w1) = 1, X₁(w2) = 2, X2(w1) = 2, X2 (w2) = 2, Find the joint distribution of X1, X2. (ii) X1(W3) = 1, X₁(w4) = 1, X2(W3) = 1, X2(w4) = 2. [4 Marks] Let Y, Z be random variables on a probability space (, F, P). Let the random vector (Y, Z) take on values in the set [0, 1] x [0,2] and let the joint distribution of Y, Z on [0, 1] x [0,2] be given by 1 dPy,z (y, z) ==(y²z+yz2) dy dz. harks 12 Find the distribution Py of the random variable Y. [8 Marks]arrow_forwardNeed help answering wuestionarrow_forwardFor the following function, find the full power series centered at x = 0 and then give the first 5 nonzero terms of the power series and the open interval of convergence. f(x) = Σ| n=0 9 f(x) = 6 + 4x f(x)− + + + ++··· The open interval of convergence is: ☐ (Give your answer in help (intervals) .)arrow_forward
- marks 11 3 3/4 x 1/4 1. There are 4 balls in an urn, of which 3 balls are white and 1 ball is black. You do the following: draw a ball from the urn at random, note its colour, do not return the ball to the urn; draw a second ball, note its colour, return the ball to the urn; finally draw a third ball and note its colour. (i) Describe the corresponding discrete probability space (Q, F, P). [9 Marks] (ii) Consider the following event, A: Among the first and the third balls, one ball is white, the other is black. Write down A as a subset of the sample space and find its probability, P(A). [2 Marks]arrow_forwardThere are 4 balls in an urn, of which 3 balls are white and 1 ball isblack. You do the following:• draw a ball from the urn at random, note its colour, do not return theball to the urn;• draw a second ball, note its colour, return the ball to the urn;• finally draw a third ball and note its colour.(i) Describe the corresponding discrete probability space(Ω, F, P). [9 Marks](ii) Consider the following event,A: Among the first and the third balls, one ball is white, the other is black.Write down A as a subset of the sample space Ω and find its probability, P(A)arrow_forwardLet (Ω, F, P) be a probability space and let X : Ω → R be a randomvariable whose probability density function is given by f(x) = 12 |x|e−|x| forx ∈ R.(i) Find the characteristic function of the random variable X.[8 Marks](ii) Using the result of (i), calculate the first two moments of therandom variable X, i.e., E(Xn) for n = 1, 2. [6 Marks]Total marks 16 (iii) What is the variance of X?arrow_forward
- Let X be a random variable with the standard normal distribution, i.e.,X has the probability density functionfX(x) = 1/√2π e^-(x^2/2)2 .Consider the random variablesXn = 20(3 + X6) ^1/2n e ^x^2/n+19 , x ∈ R, n ∈ N.Using the dominated convergence theorem, prove that the limit exists and find it limn→∞E(Xn)arrow_forwardLet X be a discrete random variable taking values in {0, 1, 2, . . . }with the probability generating function G(s) = E(sX). Prove thatVar(X) = G′′(1) + G′(1) − [G′(1)]2.[5 Marks](ii) Let X be a random variable taking values in [0,∞) with proba-bility density functionfX(u) = (5/4(1 − u^4, 0 ≤ u ≤ 1,0, otherwise. Let y =x^1/2 find the probability density function of Yarrow_forward14 14 4. The graph shows the printing rate of Printer A. Printer B can print at a rate of 25 pages per minute. How does the printing rate for Printer B compare to the printing rate for Printer A? The printing rate for Printer B is than the rate for Printer A because the rate of 25 pages per minute is than the rate of for Printer A. pages per minute RIJOUT 40 fy Printer Rat Number of Pages 8N WA 10 30 20 Printer A 0 0 246 Time (min) Xarrow_forward
- 2. y 1 Ο 2 3 4 -1 Graph of f x+ The graph gives one cycle of a periodic function f in the xy-plane. Which of the following describes the behavior of f on the interval 39 x < 41 ? (Α B The function f is decreasing. The function f is increasing. The function f is decreasing, then increasing. D The function f is increasing, then decreasing.arrow_forwardDepth (feet) 5- 4- 3- 2. WW www 1 D B 0 10 20 30 40 50 60 70 80 Time (hours) x A graph of the depth of water at a pier in the ocean is given, along with five labeled points A, B, C, D, and E in the xy-plane. For the time periods near these data points, a periodic relationship between depth of water, in feet, and time, in hours, can be modeled using one cycle of the periodic relationship. Based on the graph, which of the following is true? B C The time interval between points A and B gives the period. The time interval between points A and C gives the period. The time interval between points A and D gives the period. The time interval between points A and E gives the period.arrow_forwardA certain type of machine produces a number of amps of electricity that follows a cyclic, periodically increasing and decreasing pattern. The machine produces a maximum of 7 amps at certain times and a minimum of 2 amps at other times. It takes about 5 minutes for one cycle from 7 amps to the next 7 amps to occur. Which of the following graphs models amps as a function of time, in minutes, for this machine? A B C D Amps M 3 4 5 678 Minutes Amps w 3 4 5 6 7 8 Minutes 8 Amps- 6+ Amps y 2345678 Minutes 456 8 Minutesarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
Numerical Integration Introduction l Trapezoidal Rule Simpson's 1/3 Rule l Simpson's 3/8 l GATE 2021; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=zadUB3NwFtQ;License: Standard YouTube License, CC-BY