Concept explainers
Throughout this Exercise Set, in computing standard divisors, standard quotas, and modified quotas, round to the nearest hundredth when necessary.
A small country is comprised of four states, A, B, C, and D. The population of each state, in thousands, is given in the following table. Use this information to solve Exercises 1-4.
Slate | A | B | C | D | Total |
Population (in thousands) | 138 | 266 | 534 | 662 | 1600 |
According to the country’s constitution, the congress will have 80 seats, divided among the four states according to their respective populations.
a. Find the standard divisor, in thousands. How many people are there for each seal in congress?
b. Find each state’s standard quota.
c. Find each state’s lower quota and upper quota.
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
Thinking Mathematically, Books a la Carte Edition plus MyLab Math with Pearson eText -- Access Card Package, 4/e (7th Edition)
- 9. Analyze the Fourier Transform of a Discontinuous Function Refer to page 67 for the Fourier transform problem. Compute the Fourier transform of the given piecewise function and discuss its properties. Link: [https://drive.google.com/file/d/1RQ2OZK-LSxpRyejKEMg1t2q15dbpVLCS/view? usp=sharing] Present all steps in detail.arrow_forward4. Determine the Taylor Series Expansion About a Point Refer to page 62 for the Taylor series problem. Find the Taylor series expansion of the function about the specified point and include the radius of convergence. Link: [https://drive.google.com/file/d/1RQ2OZK-LSxpRyejKEMg1t2q15dbpVLCS/view? usp=sharing] Explain the methodology and verify the series.arrow_forward10. Prove the Orthogonality of Eigenfunctions Go to page 68 of the document for the eigenfunction problem. Prove the orthogonality of the eigenfunctions of a given Sturm-Liouville problem. Link: [https://drive.google.com/file/d/1RQ2OZK-LSxpRyejKEMg1t2q15dbpVLCS/view? usp=sharing] Provide a rigorous proof, including necessary integrals and conditions.arrow_forward
- Show what to do on the graph visually please!arrow_forward1. Perform a Change of Variables for the Given Integral Refer to page 59 in the shared document for the integral problem. Apply a specified change of variables to simplify the integral and evaluate it. Link: [https://drive.google.com/file/d/1RQ2OZk-LSxpRyejKEMg1t2q15dbpVLCS/view? usp=sharing] Clearly outline each step in the transformation and solution.arrow_forward9. Solve the System of Ordinary Differential Equations Using Matrix Methods Turn to page 57 for the system of ODES. Solve the system using matrix methods, such as eigenvalue decomposition or diagonalization. Link: [https://drive.google.com/file/d/1RQ2OZK-LSxp RyejKEMg1t2q15dbpVLCS/view? usp=sharing] Show a clear, step-by-step solution.arrow_forward
- A study was done using a treatment group and a placebo group. The results are shown in the table. Assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. Complete parts (a) and (b) below. Use a 0.05 significance level for both parts. a. Test the claim that the two samples are from populations with the same mean. What are the null and alternative hypotheses? OA. Ho PP2 H₁: P1 P2 OC. Ho H₁₂ H₁: P₁arrow_forward3. Solve the Differential Equation Using the Method of Characteristics Go to page 51 for a partial differential equation problem. Use the method of characteristics to solve the given equation. Link: [https://drive.google.com/file/d/1RQ2OZK-LSxp RyejKEMg1t2ql5dbpVLCS/view? usp=sharing] Include all detailed steps in your solution.arrow_forward8. Determine the Fourier Series Expansion of the Function Refer to page 56 of the document for the Fourier series problem. Compute the Fourier series expansion of the given periodic function. Link: [https://drive.google.com/file/d/1RQ2OZK-LSxp RyejKEMg1t2q15dbpVLCS/view? usp=sharing] Include all steps involved in the calculation.arrow_forwardFind the regression equation, letting the first variable be the predictor (x) variable. Using the listed lemon/crash data, where lemon imports are in metric tons and the fatality rates are per 100,000 people, find the best predicted crash fatality rate for a year in which there are 475 metric tons of lemon imports. Is the prediction worthwhile? Use a significance level of 0.05. Lemon Imports 235 264 356 Crash Fatality Rate 16 15.9 15.6 476 518 15.3 D 15.1 Find the equation of the regression line. + (Round the y-intercept to three decimal places as needed. Round the slope to four decimal places as needed.) The best predicted crash fatality rate for a year in which there are 475 metric tons of lemon imports is fatalities per 100,000 population. (Round to one decimal place as needed.) Is the prediction worthwhile? OA. Since there appears to be an outlier, the prediction is not appropriate. OB. Since all of the requirements for finding the equation of the regression line are met, the…arrow_forwardA study of seat belt users and nonusers yielded the randomly selected sample data summarized in the accompanying table. Use a 0.05 significance level to test the claim that the amount of smoking is independent of seat belt use. A plausible theory is that people who smoke are less concerned about their health and safety and are therefore less inclined to wear seat belts. Is this theory supported by the sample data? Click the icon to view the data table. Determine the null and alternative hypotheses. OA. Ho: The amount of smoking is dependent upon seat belt use. H₁: The amount of smoking is not dependent upon seat belt use. OB. Ho: Heavy smokers an H₁: Heavy smokers an OC. Ho: The amount of sm H₁: The amount of sm OD. Ho Heavy smokers an H₁: Heavy smokers ar Determine the test statistic. x²= (Round to three decin More Info Number of Cigarettes Smoked per Day 0 1-14 15-34 35 and over Wear Seat Belts 193 20 42 9 Don't Wear Seat Belts 159 10 41 9 Determine the P-value of the t P-Value =…arrow_forwardAssume that the amounts of weight that male college students gain during their freshman year are normally distributed with a mean of μ = 1.3 kg and a standard deviation of o=5.5 kg. Complete parts (a) through (c) below. a. If 1 male college student is randomly selected, find the probability that he gains between 0 kg and 3 kg during freshman year. The probability is (Round to four decimal places as needed.) b. If 9 male college students are randomly selected, find the probability that their mean weight gain during freshman year is between 0 kg and 3 kg. The probability is (Round to four decimal places as needed.) c. Why can the normal distribution be used in part (b), even though the sample size does not exceed 30? OA. Since the distribution is of sample means, not individuals, the distribution is a normal distribution for any sample size. OB. Since the weight gain exceeds 30, the distribution of sample means is a normal distribution for any sample size. OC. Since the original…arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education