![Essential Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781133112280/9781133112280_largeCoverImage.gif)
Essential Calculus: Early Transcendentals
2nd Edition
ISBN: 9781133112280
Author: James Stewart
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13.3, Problem 15E
(a)
To determine
To find: The potential function f such that
(b)
To determine
The value of
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
The graph of f(x) is given below. Select each true statement about the continuity of f(x) at x = 1.
Select all that apply:
☐ f(x) is not continuous at x = 1 because it is not defined at x = 1.
☐ f(x) is not continuous at x = 1 because lim f(x) does not exist.
x+1
☐ f(x) is not continuous at x = 1 because lim f(x) ‡ f(1).
x+→1
☐ f(x) is continuous at x = 1.
a is done please show b
A homeware company has been approached to manufacture a cake tin in the shape
of a "ghost" from the Pac-Man video game to celebrate the 45th Anniversary of the
games launch. The base of the cake tin has a characteristic dimension / and is
illustrated in Figure 1 below, you should assume the top and bottom of the shape
can be represented by semi-circles. The vertical sides of the cake tin have a height of
h. As the company's resident mathematician, you need to find the values of r and h
that minimise the internal surface area of the cake tin given that the volume of the
tin is Vfixed-
2r
Figure 1 - Plan view of the "ghost" cake tin base.
(a) Show that the Volume (V) of the cake tin as a function of r and his
2(+1)²h
V = 2
Chapter 13 Solutions
Essential Calculus: Early Transcendentals
Ch. 13.1 - Sketch the vector field F by drawing a diagram...Ch. 13.1 - Sketch the vector field F by drawing a diagram...Ch. 13.1 - Prob. 3ECh. 13.1 - Prob. 4ECh. 13.1 - Prob. 5ECh. 13.1 - Prob. 6ECh. 13.1 - Prob. 7ECh. 13.1 - Sketch the vector field F by drawing a diagram...Ch. 13.1 - Prob. 9ECh. 13.1 - Sketch the vector field F by drawing a diagram...
Ch. 13.1 - Match the vector fields F with the plots labeled...Ch. 13.1 - Match the vector fields F with the plots labeled...Ch. 13.1 - Match the vector fields F with the plots labeled...Ch. 13.1 - Match the vector fields F with the plots labeled...Ch. 13.1 - Match the vector fields F on 3 with the plots...Ch. 13.1 - Match the vector fields F on 3 with the plots...Ch. 13.1 - Match the vector fields F on 3 with the plots...Ch. 13.1 - Match the vector fields F on 3 with the plots...Ch. 13.1 - Prob. 21ECh. 13.1 - Prob. 22ECh. 13.1 - Prob. 23ECh. 13.1 - Prob. 24ECh. 13.1 - Find the gradient vector field f of f and sketch...Ch. 13.1 - Find the gradient vector field f of f and sketch...Ch. 13.1 - Prob. 29ECh. 13.1 - At time t = 1, a particle is located at position...Ch. 13.1 - The flow lines (or streamlines) of a vector field...Ch. 13.1 - (a) Sketch the vector field F(x, y) = i + x j and...Ch. 13.2 - Evaluate the line integral, where C is the given...Ch. 13.2 - Evaluate the line integral, where C is the given...Ch. 13.2 - Evaluate the line integral, where C is the given...Ch. 13.2 - Evaluate the line integral, where C is the given...Ch. 13.2 - Prob. 5ECh. 13.2 - Evaluate the line integral, where C is the given...Ch. 13.2 - Prob. 7ECh. 13.2 - Evaluate the line integral, where C is the given...Ch. 13.2 - Prob. 9ECh. 13.2 - Evaluate the line integral, where C is the given...Ch. 13.2 - Prob. 11ECh. 13.2 - Prob. 12ECh. 13.2 - Prob. 13ECh. 13.2 - Prob. 14ECh. 13.2 - Evaluate the line integral, where C is the given...Ch. 13.2 - Evaluate the line integral, where C is the given...Ch. 13.2 - Let F be the vector field shown in the figure. (a)...Ch. 13.2 - The figure shows a vector field F and two curves...Ch. 13.2 - Prob. 19ECh. 13.2 - Evaluate the line integral CFdr, where C is given...Ch. 13.2 - Evaluate the line integral C F dr, where C is...Ch. 13.2 - Evaluate the line integral C F dr, where C is...Ch. 13.2 - Prob. 23ECh. 13.2 - Use a calculator or CAS to evaluate the line...Ch. 13.2 - (a) Find the work done by the force field F(x, y)...Ch. 13.2 - A thin wire is bent into the shape of a semicircle...Ch. 13.2 - A thin wire has the shape of the first-quadrant...Ch. 13.2 - Prob. 33ECh. 13.2 - Prob. 34ECh. 13.2 - Prob. 35ECh. 13.2 - Prob. 36ECh. 13.2 - Prob. 37ECh. 13.2 - Prob. 38ECh. 13.2 - Find the work done by the force field F(x, y, z) =...Ch. 13.2 - Prob. 40ECh. 13.2 - Prob. 41ECh. 13.2 - Prob. 42ECh. 13.2 - Prob. 43ECh. 13.2 - Prob. 44ECh. 13.2 - (a) Show that a constant force field does zero...Ch. 13.2 - Prob. 45ECh. 13.2 - Prob. 46ECh. 13.2 - Experiments show that a steady current I in a long...Ch. 13.3 - The figure shows a curve C and a contour map of a...Ch. 13.3 - A table of values of a function f with continuous...Ch. 13.3 - Determine whether or not F is a conservative...Ch. 13.3 - Prob. 4ECh. 13.3 - Prob. 5ECh. 13.3 - Prob. 6ECh. 13.3 - Determine whether or not F is a conservative...Ch. 13.3 - Determine whether or not F is a conservative...Ch. 13.3 - Determine whether or not F is a conservative...Ch. 13.3 - Determine whether or not F is a conservative...Ch. 13.3 - (a) Find a function f such that F = f and (b) use...Ch. 13.3 - (a) Find a function f such that F = f and (b) use...Ch. 13.3 - (a) Find a function f such that F = f and (b) use...Ch. 13.3 - Prob. 14ECh. 13.3 - Prob. 15ECh. 13.3 - (a) Find a function f such that F = f and (b) use...Ch. 13.3 - Show that the line integral is independent of path...Ch. 13.3 - Show that the line integral is independent of path...Ch. 13.3 - Find the work done by the force field F in moving...Ch. 13.3 - Find the work done by the force field F in moving...Ch. 13.3 - Is the vector field shown in the figure...Ch. 13.3 - Is the vector field shown in the figure...Ch. 13.3 - Let F = f, where f(x, y) = sin(x 2y). Find...Ch. 13.3 - Show that if the vector field F = P i + Q j + R k...Ch. 13.3 - Use Exercise 25 to show that the line integral...Ch. 13.3 - Determine whether or not the given set is (a)...Ch. 13.3 - Prob. 28ECh. 13.3 - Prob. 29ECh. 13.3 - Determine whether or not the given set is (a)...Ch. 13.3 - Let F(x, y) = yi+xjx2+y2 (a) Show that P/y=Q/x....Ch. 13.3 - (a) Suppose that F is an inverse square force...Ch. 13.4 - Evaluate the line integral by two methods: (a)...Ch. 13.4 - Evaluate the line integral by two methods: (a)...Ch. 13.4 - Evaluate the line integral by two methods: (a)...Ch. 13.4 - Evaluate the line integral by two methods: (a)...Ch. 13.4 - Use Greens Theorem to evaluate the line integral...Ch. 13.4 - Use Greens Theorem to evaluate the line integral...Ch. 13.4 - Use Greens Theorem to evaluate the line integral...Ch. 13.4 - Use Greens Theorem to evaluate the line integral...Ch. 13.4 - Use Greens Theorem to evaluate the line integral...Ch. 13.4 - Use Greens Theorem to evaluate the line integral...Ch. 13.4 - Use Greens Theorem to evaluate C F dr. (Check the...Ch. 13.4 - Use Greens Theorem to evaluate C F dr. (Check the...Ch. 13.4 - Use Greens Theorem to evaluate C F dr. (Check the...Ch. 13.4 - Use Greens Theorem to evaluate C F dr. (Check the...Ch. 13.4 - Prob. 17ECh. 13.4 - A particle starts at the point (2, 0), moves along...Ch. 13.4 - Use one of the formulas in (5) to find the area...Ch. 13.4 - If a circle C with radius 1 rolls along the...Ch. 13.4 - (a) If C is the line segment connecting the point...Ch. 13.4 - Let D be a region bounded by a simple closed path...Ch. 13.4 - Use Exercise 22 to find the centroid of a...Ch. 13.4 - Use Exercise 22 to find the centroid of the...Ch. 13.4 - A plane lamina with constant density (x, y) = ...Ch. 13.4 - Prob. 26ECh. 13.4 - Use the method of Example 5 to calculate C F dr,...Ch. 13.4 - Calculate C F dr, where F(x, y) = x2 + y, 3x y2...Ch. 13.4 - If F is the vector field of Example 5, show that C...Ch. 13.4 - Complete the proof of the special case of Greens...Ch. 13.4 - Use Greens Theorem to prove the change of...Ch. 13.5 - Find (a) the curl and (b) the divergence of the...Ch. 13.5 - Find (a) the curl and (b) the divergence of the...Ch. 13.5 - Find (a) the curl and (b) the divergence of the...Ch. 13.5 - Find (a) the curl and (b) the divergence of the...Ch. 13.5 - Find (a) the curl and (b) the divergence of the...Ch. 13.5 - Find (a) the curl and (b) the divergence of the...Ch. 13.5 - Find (a) the curl and (b) the divergence of the...Ch. 13.5 - The vector field F is shown in the xy-plane and...Ch. 13.5 - The vector field F is shown in the xy-plane and...Ch. 13.5 - Let f be a scalar field and F a vector field....Ch. 13.5 - Determine whether or not the vector field is...Ch. 13.5 - Determine whether or not the vector field is...Ch. 13.5 - Determine whether or not the vector field is...Ch. 13.5 - Determine whether or not the vector field is...Ch. 13.5 - Determine whether or not the vector field is...Ch. 13.5 - Determine whether or not the vector field is...Ch. 13.5 - Is there a vector field G on 3 such that curl G =...Ch. 13.5 - Prob. 18ECh. 13.5 - Prob. 19ECh. 13.5 - Prob. 20ECh. 13.5 - Prove the identity, assuming that the appropriate...Ch. 13.5 - Prove the identity, assuming that the appropriate...Ch. 13.5 - Prob. 23ECh. 13.5 - Prob. 24ECh. 13.5 - Prob. 25ECh. 13.5 - Prob. 26ECh. 13.5 - Prob. 27ECh. 13.5 - Prob. 28ECh. 13.5 - Prob. 29ECh. 13.5 - Let r = x i + y j + z k and r = |r|. 32. If F =...Ch. 13.5 - Prob. 31ECh. 13.5 - Prob. 32ECh. 13.5 - Prob. 33ECh. 13.5 - Prob. 34ECh. 13.5 - Prob. 35ECh. 13.5 - Maxwells equations relating the electric field E...Ch. 13.6 - Identify the surface with the given vector...Ch. 13.6 - Identify the surface with the given vector...Ch. 13.6 - Prob. 3ECh. 13.6 - Prob. 4ECh. 13.6 - Match the equations with the graphs labeled IIV...Ch. 13.6 - Match the equations with the graphs labeled IIV...Ch. 13.6 - Prob. 13ECh. 13.6 - Match the equations with the graphs labeled IIV...Ch. 13.6 - Find a parametric representation for the surface....Ch. 13.6 - Prob. 16ECh. 13.6 - Find a parametric representation for the surface....Ch. 13.6 - Find a parametric representation for the surface....Ch. 13.6 - Find a parametric representation for the surface....Ch. 13.6 - Find a parametric representation for the surface....Ch. 13.6 - Find a parametric representation for the surface....Ch. 13.6 - Find a parametric representation for the surface....Ch. 13.6 - Find parametric equations for the surface obtained...Ch. 13.6 - Find parametric equations for the surface obtained...Ch. 13.6 - The surface with parametric equations...Ch. 13.6 - Find an equation of the tangent plane to the given...Ch. 13.6 - Prob. 30ECh. 13.6 - Prob. 31ECh. 13.6 - Prob. 32ECh. 13.6 - Find the area of the surface. 39. The part of the...Ch. 13.6 - Prob. 34ECh. 13.6 - Find the area of the surface. 41. The part of the...Ch. 13.6 - Find the area of the surface. 42. The part of the...Ch. 13.6 - Prob. 37ECh. 13.6 - Prob. 38ECh. 13.6 - Prob. 39ECh. 13.6 - Prob. 41ECh. 13.6 - Find the area of the surface. 40.The part of the...Ch. 13.6 - Find the area of the surface. 48.The helicoid (or...Ch. 13.6 - Find the area of the surface. 43.The surface with...Ch. 13.6 - Find the area of the surface. 50.The part of the...Ch. 13.6 - If the equation of a surfaceSis z =f(x,y),...Ch. 13.6 - Find the area of the surface correct to four...Ch. 13.6 - Find the area of the surface correct to four...Ch. 13.6 - Find, to four decimal places, the area of the part...Ch. 13.6 - Find the area of the surface with vector equation...Ch. 13.6 - (a) Show that the parametric equations x...Ch. 13.6 - (a) Show that the parametric equationsx = acosh u...Ch. 13.6 - Find the area of the part of the spherex2+y2+ z2=...Ch. 13.6 - The figure shows the surface created when the...Ch. 13.6 - Use Definition 6 and the parametric equations for...Ch. 13.6 - Use Formula 10 to find the area of the surface...Ch. 13.6 - Use Formula 10 to find the area of the surface...Ch. 13.7 - Let S be the boundary surface of the box enclosed...Ch. 13.7 - A surface S consists of the cylinderx2+ y2=1, 1 z...Ch. 13.7 - Prob. 3ECh. 13.7 - Suppose that f(x,y,z)=g(x2+y2+z2), where g is a...Ch. 13.7 - Evaluate the surface integral. 5. s (x + y + z)...Ch. 13.7 - Evaluate the surface integral. 6. s xyz dS, Sis...Ch. 13.7 - Evaluate the surface integral. 7. s y dS,Sis the...Ch. 13.7 - Evaluate the surface integral. 8.s (x2+ y2)dS, Sis...Ch. 13.7 - Evaluate the surface integral. 9. s x2yz dS, Sis...Ch. 13.7 - Evaluate the surface integral. 10. s xz dS, S is...Ch. 13.7 - Evaluate the surface integral. 11. s x dS, S is...Ch. 13.7 - Evaluate the surface integral. 12. s y dS, S is...Ch. 13.7 - Evaluate the surface integral. Sx2z2dS, S is the...Ch. 13.7 - Evaluate the surface integral. SzdS, S is the...Ch. 13.7 - Evaluate the surface integral. 15. SydS, S is the...Ch. 13.7 - Evaluate the surface integral. 16. Sy2dS, S is the...Ch. 13.7 - Evaluate the surface integral. 17. s (x2z +...Ch. 13.7 - Evaluate the surface integral. 19. S(z+x2y)dS, S...Ch. 13.7 - Evaluate the surface integral. 19. s xz dS, S is...Ch. 13.7 - Evaluate the surface integral. 20. s (x2 + y2 +...Ch. 13.7 - Evaluate the surface integral s F dS for the...Ch. 13.7 - Evaluate the surface integral s F dS for the...Ch. 13.7 - Evaluate the surface integral s F dS for the...Ch. 13.7 - Evaluate the surface integral s F dS for the...Ch. 13.7 - Evaluate the surface integral SFdS for the given...Ch. 13.7 - Evaluate the surface integral SFdS for the given...Ch. 13.7 - Evaluate the surface integral sFdS for the given...Ch. 13.7 - Evaluate the surface integral SFdS for the given...Ch. 13.7 - Evaluate the surface integral sFdS for the given...Ch. 13.7 - Evaluate the surface integral SFdS for the given...Ch. 13.7 - Evaluate the surface integral SFdS for the given...Ch. 13.7 - Evaluate the surface integral SFdS for the given...Ch. 13.7 - Find the value of Sx2y2z2dS correct to four...Ch. 13.7 - Find a formula for s F dS similar to Formula 10...Ch. 13.7 - Find a formula for s F dS similar to Formula 10...Ch. 13.7 - Find the center of mass of the hemisphere x2 + y2...Ch. 13.7 - Find the mass of a thin funnel in the shape of a...Ch. 13.7 - (a) Give an integral expression for the moment of...Ch. 13.7 - Let S be the part of the sphere x2 + y2 + z2 = 25...Ch. 13.7 - Prob. 41ECh. 13.7 - Prob. 42ECh. 13.7 - Use Gausss Law to find the charge contained in the...Ch. 13.7 - Use Gausss Law to find the charge enclosed by the...Ch. 13.7 - The temperature at the point (x, y, z) in a...Ch. 13.7 - Prob. 46ECh. 13.7 - Let F be an inverse square field, that is, |F(r) =...Ch. 13.8 - Use Stokes Theorem to evaluate ScurlFdS. 1....Ch. 13.8 - Use Stokes Theorem to evaluate ScurlFdS. 2....Ch. 13.8 - Use Stokes Theorem to evaluate s curl F dS. 4....Ch. 13.8 - F(x, y, z) = xyz i + xy j + x2yz k. S consists of...Ch. 13.8 - Use Stokes Theorem to evaluate c F dr. In each...Ch. 13.8 - Use Stokes Theorem to evaluate c F dr. In each...Ch. 13.8 - Use Stokes Theorem to evaluate CFdr. In each case...Ch. 13.8 - Use Stokes Theorem to evaluate CFdr. In each case...Ch. 13.8 - (a) Use Stokes Theorem to evaluate c F dr, where...Ch. 13.8 - (a) Use Stokes Theorem to evaluate c F dr, where...Ch. 13.8 - Prob. 11ECh. 13.8 - Verify that Stokes Theorem is true for the given...Ch. 13.8 - Verify that Stokes Theorem is true for the given...Ch. 13.8 - Let C be a simple closed smooth curve that lies in...Ch. 13.8 - A particle moves along line segments from the...Ch. 13.8 - Evaluate c (y + sin x) dx + (z2 + cos y) dy + x3...Ch. 13.8 - Prob. 17ECh. 13.8 - Prob. 18ECh. 13.9 - Verify that the Divergence Theorem is true for the...Ch. 13.9 - Verify that the Divergence Theorem is true for the...Ch. 13.9 - Verify that the Divergence Theorem is true for the...Ch. 13.9 - Prob. 4ECh. 13.9 - Prob. 5ECh. 13.9 - Prob. 6ECh. 13.9 - Use the Divergence Theorem to calculate the...Ch. 13.9 - Use the Divergence Theorem to calculate the...Ch. 13.9 - Use the Divergence Theorem to calculate the...Ch. 13.9 - Prob. 10ECh. 13.9 - Use the Divergence Theorem to calculate the...Ch. 13.9 - Use the Divergence Theorem to calculate the...Ch. 13.9 - Prob. 13ECh. 13.9 - Prob. 14ECh. 13.9 - Use the Divergence Theorem to evaluate s F dS,...Ch. 13.9 - Prob. 18ECh. 13.9 - Prob. 19ECh. 13.9 - Prob. 20ECh. 13.9 - Prob. 21ECh. 13.9 - Prob. 22ECh. 13.9 - Prob. 23ECh. 13.9 - Prob. 24ECh. 13.9 - Prob. 25ECh. 13.9 - Prob. 26ECh. 13.9 - Prob. 27ECh. 13.9 - Prob. 28ECh. 13.9 - Prob. 29ECh. 13.9 - Prob. 30ECh. 13 - Prob. 1RCCCh. 13 - Prob. 2RCCCh. 13 - Prob. 3RCCCh. 13 - (a) Define the line integral of a vector field F...Ch. 13 - Prob. 5RCCCh. 13 - Prob. 6RCCCh. 13 - Prob. 7RCCCh. 13 - Prob. 8RCCCh. 13 - Prob. 9RCCCh. 13 - Prob. 10RCCCh. 13 - Prob. 11RCCCh. 13 - Prob. 12RCCCh. 13 - Prob. 13RCCCh. 13 - Prob. 14RCCCh. 13 - State the Divergence Theorem.Ch. 13 - In what ways are the Fundamental Theorem for Line...Ch. 13 - Prob. 1RQCh. 13 - Prob. 2RQCh. 13 - Prob. 3RQCh. 13 - Prob. 4RQCh. 13 - Prob. 5RQCh. 13 - Prob. 6RQCh. 13 - Prob. 7RQCh. 13 - Prob. 8RQCh. 13 - Prob. 9RQCh. 13 - Prob. 10RQCh. 13 - Prob. 11RQCh. 13 - Prob. 12RQCh. 13 - A vector field F, a curve C, and a point P are...Ch. 13 - Prob. 2RECh. 13 - Prob. 3RECh. 13 - Prob. 4RECh. 13 - Prob. 5RECh. 13 - Prob. 6RECh. 13 - Prob. 7RECh. 13 - Prob. 8RECh. 13 - Prob. 9RECh. 13 - Find the work done by the force field F(x, y, z) =...Ch. 13 - Prob. 11RECh. 13 - Show that F is a conservative vector field. Then...Ch. 13 - Prob. 13RECh. 13 - Show that F is a conservative and use this fact to...Ch. 13 - Verify that Greens Theorem is true for the line...Ch. 13 - Prob. 16RECh. 13 - Prob. 17RECh. 13 - Prob. 18RECh. 13 - Prob. 19RECh. 13 - Prob. 20RECh. 13 - Prob. 21RECh. 13 - If f and g are twice differentiable functions,...Ch. 13 - If f is a harmonic function, that is, 2f = 0, show...Ch. 13 - Prob. 24RECh. 13 - Find the area of the part of the surface z = x2 +...Ch. 13 - (a) Find an equation of the tangent plane at the...Ch. 13 - Prob. 27RECh. 13 - Prob. 28RECh. 13 - Prob. 29RECh. 13 - Prob. 30RECh. 13 - Prob. 31RECh. 13 - Prob. 32RECh. 13 - Prob. 33RECh. 13 - Prob. 34RECh. 13 - Verify that the Divergence Theorem is true for the...Ch. 13 - Compute the outward flux of F(x, y, z) =...Ch. 13 - Let F(x, y) = (2x3+2xy22y)i+(2y3+2x2y+2x)jx2+y2...Ch. 13 - Prob. 38RECh. 13 - If the components of F have continuous second...Ch. 13 - Prob. 39RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- 15. Please solve this and show each and every step please. PLEASE no chatgpt can I have a real person solve it please!! I am stuck. I am doing pratice problems and I do not even know where to start with this. The question is Please compute the indicated functional value.arrow_forwardUse a graph of f to estimate lim f(x) or to show that the limit does not exist. Evaluate f(x) near x = a to support your conjecture. Complete parts (a) and (b). x-a f(x)= 1 - cos (4x-4) 3(x-1)² ; a = 1 a. Use a graphing utility to graph f. Select the correct graph below.. A. W → ✓ Each graph is displayed in a [- 1,3] by [0,5] window. B. in ✓ ○ C. und ☑ Use the graphing utility to estimate lim f(x). Select the correct choice below and, if necessary, fill in the answer box to complete your choice. x-1 ○ A. The limit appears to be approximately ☐ . (Round to the nearest tenth as needed.) B. The limit does not exist. b. Evaluate f(x) for values of x near 1 to support your conjecture. X 0.9 0.99 0.999 1.001 1.01 1.1 f(x) ○ D. + ☑ (Round to six decimal places as needed.) Does the table from the previous step support your conjecture? A. No, it does not. The function f(x) approaches a different value in the table of values than in the graph, after the approached values are rounded to the…arrow_forwardx²-19x+90 Let f(x) = . Complete parts (a) through (c) below. x-a a. For what values of a, if any, does lim f(x) equal a finite number? Select the correct choice below and, if necessary, fill in the answer box to complete your choice. x→a+ ○ A. a= (Type an integer or a simplified fraction. Use a comma to separate answers as needed.) B. There are no values of a for which the limit equals a finite number. b. For what values of a, if any, does lim f(x) = ∞o? Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. x→a+ A. (Type integers or simplified fractions) C. There are no values of a that satisfy lim f(x) = ∞. + x-a c. For what values of a, if any, does lim f(x) = -∞0? Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. x→a+ A. Either a (Type integers or simplified fractions) B.arrow_forwardSketch a possible graph of a function f, together with vertical asymptotes, that satisfies all of the following conditions. f(2)=0 f(4) is undefined lim f(x)=1 X-6 lim f(x) = -∞ x-0+ lim f(x) = ∞ lim f(x) = ∞ x-4 _8arrow_forwardDetermine the following limit. lim 35w² +8w+4 w→∞ √49w+w³ 3 Select the correct choice below, and, if necessary, fill in the answer box to complete your choice. ○ A. lim W→∞ 35w² +8w+4 49w+w3 (Simplify your answer.) B. The limit does not exist and is neither ∞ nor - ∞.arrow_forwardCalculate the limit lim X-a x-a 5 using the following factorization formula where n is a positive integer and x-➡a a is a real number. x-a = (x-a) (x1+x-2a+x lim x-a X - a x-a 5 = n- + xa an-2 + an−1)arrow_forwardThe function s(t) represents the position of an object at time t moving along a line. Suppose s(1) = 116 and s(5)=228. Find the average velocity of the object over the interval of time [1,5]. The average velocity over the interval [1,5] is Vav = (Simplify your answer.)arrow_forwardFor the position function s(t) = - 16t² + 105t, complete the following table with the appropriate average velocities. Then make a conjecture about the value of the instantaneous velocity at t = 1. Time Interval Average Velocity [1,2] Complete the following table. Time Interval Average Velocity [1, 1.5] [1, 1.1] [1, 1.01] [1, 1.001] [1,2] [1, 1.5] [1, 1.1] [1, 1.01] [1, 1.001] ப (Type exact answers. Type integers or decimals.) The value of the instantaneous velocity at t = 1 is (Round to the nearest integer as needed.)arrow_forwardFind the following limit or state that it does not exist. Assume b is a fixed real number. (x-b) 40 - 3x + 3b lim x-b x-b ... Select the correct choice below and, if necessary, fill in the answer box to complete your choice. (x-b) 40 -3x+3b A. lim x-b x-b B. The limit does not exist. (Type an exact answer.)arrow_forwardx4 -289 Consider the function f(x) = 2 X-17 Complete parts a and b below. a. Analyze lim f(x) and lim f(x), and then identify the horizontal asymptotes. x+x X--∞ lim 4 X-289 2 X∞ X-17 X - 289 lim = 2 ... X∞ X - 17 Identify the horizontal asymptotes. Select the correct choice and, if necessary, fill in the answer box(es) to complete your choice. A. The function has a horizontal asymptote at y = B. The function has two horizontal asymptotes. The top asymptote is y = and the bottom asymptote is y = ☐ . C. The function has no horizontal asymptotes. b. Find the vertical asymptotes. For each vertical asymptote x = a, evaluate lim f(x) and lim f(x). Select the correct choice and, if necessary, fill in the answer boxes to complete your choice. earrow_forwardExplain why lim x²-2x-35 X-7 X-7 lim (x+5), and then evaluate lim X-7 x² -2x-35 x-7 x-7 Choose the correct answer below. A. x²-2x-35 The limits lim X-7 X-7 and lim (x+5) equal the same number when evaluated using X-7 direct substitution. B. Since each limit approaches 7, it follows that the limits are equal. C. The numerator of the expression X-2x-35 X-7 simplifies to x + 5 for all x, so the limits are equal. D. Since x²-2x-35 X-7 = x + 5 whenever x 7, it follows that the two expressions evaluate to the same number as x approaches 7. Now evaluate the limit. x²-2x-35 lim X-7 X-7 = (Simplify your answer.)arrow_forwardA function f is even if f(x) = f(x) for all x in the domain of f. If f is even, with lim f(x) = 4 and x-6+ lim f(x)=-3, find the following limits. X-6 a. lim f(x) b. +9-←x lim f(x) X-6 a. lim f(x)= +9-←x (Simplify your answer.) b. lim f(x)= X→-6 (Simplify your answer.) ...arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning