Calculus: Early Transcendentals, Loose-leaf Version, 9th
9th Edition
ISBN: 9780357022290
Author: Stewart
Publisher: Cengage Learning Acquisitions
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13.2, Problem 44E
Find r(t) if r'(t) = t i + et j + tet k and r(0) = i + j + k.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The graph of f(x) is given below. Select each true statement about the continuity of f(x) at x = 1.
Select all that apply:
☐ f(x) is not continuous at x = 1 because it is not defined at x = 1.
☐ f(x) is not continuous at x = 1 because lim f(x) does not exist.
x+1
☐ f(x) is not continuous at x = 1 because lim f(x) ‡ f(1).
x+→1
☐ f(x) is continuous at x = 1.
a is done please show b
A homeware company has been approached to manufacture a cake tin in the shape
of a "ghost" from the Pac-Man video game to celebrate the 45th Anniversary of the
games launch. The base of the cake tin has a characteristic dimension / and is
illustrated in Figure 1 below, you should assume the top and bottom of the shape
can be represented by semi-circles. The vertical sides of the cake tin have a height of
h. As the company's resident mathematician, you need to find the values of r and h
that minimise the internal surface area of the cake tin given that the volume of the
tin is Vfixed-
2r
Figure 1 - Plan view of the "ghost" cake tin base.
(a) Show that the Volume (V) of the cake tin as a function of r and his
2(+1)²h
V = 2
Chapter 13 Solutions
Calculus: Early Transcendentals, Loose-leaf Version, 9th
Ch. 13.1 - Prob. 1ECh. 13.1 - Prob. 2ECh. 13.1 - Find the limit. 3. limt0(e3ti+t2sin2tj+cos2tk)Ch. 13.1 - Find the limit. 4. limt1(t2-tt-1i+t+8j+sintlntk)Ch. 13.1 - Find the limit. 5. limt1+t21t2,tan-1t,1e2ttCh. 13.1 - Prob. 6ECh. 13.1 - Prob. 7ECh. 13.1 - Prob. 8ECh. 13.1 - Prob. 9ECh. 13.1 - Prob. 10E
Ch. 13.1 - Prob. 11ECh. 13.1 - Prob. 12ECh. 13.1 - Prob. 13ECh. 13.1 - Prob. 14ECh. 13.1 - Prob. 15ECh. 13.1 - Prob. 16ECh. 13.1 - Draw the projection of the curve onto the given...Ch. 13.1 - Prob. 18ECh. 13.1 - Prob. 19ECh. 13.1 - Prob. 20ECh. 13.1 - Prob. 21ECh. 13.1 - Prob. 22ECh. 13.1 - Find a vector equation and parametric equations...Ch. 13.1 - Find a vector equation and parametric equations...Ch. 13.1 - Match the parametric equations with the graphs...Ch. 13.1 - Match the parametric equations with the graphs...Ch. 13.1 - Match the parametric equations with the graphs...Ch. 13.1 - Match the parametric equations with the graphs...Ch. 13.1 - Match the parametric equations with the graphs...Ch. 13.1 - Match the parametric equations with the graphs...Ch. 13.1 - Prob. 31ECh. 13.1 - Prob. 32ECh. 13.1 - Prob. 33ECh. 13.1 - Prob. 34ECh. 13.1 - Prob. 35ECh. 13.1 - Show that the curve with parametric equations x =...Ch. 13.1 - Find three different surfaces that contain the...Ch. 13.1 - Find three different surfaces that contain the...Ch. 13.1 - Prob. 39ECh. 13.1 - At what points does the helix r(t) = sin t, cos t,...Ch. 13.1 - Graph the curve with parametric equations x = sin...Ch. 13.1 - Graph the curve with parametric equations x = (1 +...Ch. 13.1 - Prob. 48ECh. 13.1 - Show that the curve with parametric equations x =...Ch. 13.1 - Prob. 50ECh. 13.1 - Prob. 51ECh. 13.1 - Prob. 52ECh. 13.1 - Prob. 53ECh. 13.1 - Prob. 54ECh. 13.1 - Prob. 55ECh. 13.1 - Prob. 56ECh. 13.1 - Prob. 57ECh. 13.1 - Prob. 58ECh. 13.1 - Properties of Limits Suppose u and v are vector...Ch. 13.2 - Prob. 1ECh. 13.2 - Prob. 2ECh. 13.2 - (a) Sketch the plane curve with the given vector...Ch. 13.2 - Prob. 4ECh. 13.2 - (a) Sketch the plane curve with the given vector...Ch. 13.2 - (a) Sketch the plane curve with the given vector...Ch. 13.2 - Prob. 7ECh. 13.2 - Prob. 8ECh. 13.2 - Find the derivative of the vector function. 9....Ch. 13.2 - Prob. 10ECh. 13.2 - Find the derivative of the vector function. 11....Ch. 13.2 - Prob. 12ECh. 13.2 - Prob. 13ECh. 13.2 - Prob. 14ECh. 13.2 - Prob. 15ECh. 13.2 - Prob. 16ECh. 13.2 - Prob. 17ECh. 13.2 - Prob. 18ECh. 13.2 - Prob. 19ECh. 13.2 - Prob. 20ECh. 13.2 - Find the unit tangent vector T(t) at the given...Ch. 13.2 - Find the unit tangent vector T(t) at the given...Ch. 13.2 - Prob. 23ECh. 13.2 - Find the unit tangent vector T(t) at the given...Ch. 13.2 - Prob. 25ECh. 13.2 - Prob. 26ECh. 13.2 - Prob. 27ECh. 13.2 - Find parametric equations for the tangent line to...Ch. 13.2 - Find a vector equation for the tangent line to the...Ch. 13.2 - Find the point on the curve r(t) = 2 cos t, 2 sin...Ch. 13.2 - Find parametric equations tor the tangent line to...Ch. 13.2 - Find parametric equations tor the tangent line to...Ch. 13.2 - Find parametric equations tor the tangent line to...Ch. 13.2 - (a) Find the point of intersection of the tangent...Ch. 13.2 - Prob. 35ECh. 13.2 - At what point do the curves r1(t) = t, 1 t, 3 +...Ch. 13.2 - Evaluate the integral. 35. 02(ti-t3j+3t5k)dtCh. 13.2 - Evaluate the integral. 36. 14(2t3/2i+(t+1)tk)dtCh. 13.2 - Evaluate the integral. 37....Ch. 13.2 - Evaluate the integral. 38....Ch. 13.2 - Evaluate the integral. 39....Ch. 13.2 - Evaluate the integral. 40. (te2ti+t1-tj+11-t2k)dtCh. 13.2 - Find r(t) if r'(t) = 2t i + 3t2 j + t k and r(1) =...Ch. 13.2 - Find r(t) if r'(t) = t i + et j + tet k and r(0) =...Ch. 13.2 - Prove Formula 1 of Theorem 3.Ch. 13.2 - Prove Formula 3 of Theorem 3.Ch. 13.2 - Prob. 47ECh. 13.2 - Prob. 48ECh. 13.2 - If u(t) = sin t, cos t, t) and v(t) = t, cos t,...Ch. 13.2 - Prob. 50ECh. 13.2 - Prob. 51ECh. 13.2 - Prob. 52ECh. 13.2 - Prob. 53ECh. 13.2 - Prob. 54ECh. 13.2 - Show that if r is a vector function such that r''...Ch. 13.2 - Prob. 56ECh. 13.2 - Prob. 57ECh. 13.2 - Prob. 58ECh. 13.2 - Prob. 59ECh. 13.2 - Prob. 60ECh. 13.3 - (a) Use Equation 2 to compute the length of the...Ch. 13.3 - Prob. 2ECh. 13.3 - Find the length of the curve. 1. r(t) =t, 3 cos t,...Ch. 13.3 - Find the length of the curve. 2. r(t)=2t,t2,13t3,...Ch. 13.3 - Find the length of the curve. 3. r(t)=2ti+etj+etk,...Ch. 13.3 - Find the length of the curve. 4. r(t) =cos t i +...Ch. 13.3 - Find the length of the curve. 5. r(t) = i + t2 j +...Ch. 13.3 - Find the length of the curve. 6. r(t) = t2 i + 9t...Ch. 13.3 - Find the length of the curve correct to four...Ch. 13.3 - Find the length of the curve correct to four...Ch. 13.3 - Find the length of the curve correct to four...Ch. 13.3 - Graph the curve with parametric equations x = sin...Ch. 13.3 - Let C be the curve of intersection of the...Ch. 13.3 - Find, correct to four decimal places, the length...Ch. 13.3 - Prob. 15ECh. 13.3 - Prob. 16ECh. 13.3 - Suppose you start at the point (0, 0. 3) and move...Ch. 13.3 - Reparametrize the curve r(t)=(2t2+11)i+2tt2+1j...Ch. 13.3 - (a) Find the unit tangent and unit normal vectors...Ch. 13.3 - (a) Find the unit tangent and unit normal vectors...Ch. 13.3 - (a) Find the unit tangent and unit normal vectors...Ch. 13.3 - (a) Find the unit tangent and unit normal vectors...Ch. 13.3 - (a) Find the unit tangent and unit normal vectors...Ch. 13.3 - (a) Find the unit tangent and unit normal vectors...Ch. 13.3 - Use Theorem 10 to find the curvature. 21. r(t) =...Ch. 13.3 - Use Theorem 10 to find the curvature. 22. r(t) = t...Ch. 13.3 - Use Theorem 10 to find the curvature. 23....Ch. 13.3 - Prob. 28ECh. 13.3 - Find the curvature of r(t) = t, t2, t3 at the...Ch. 13.3 - Graph the curve with parametric equations x = cos...Ch. 13.3 - Use Formula 11 to find the curvature. 27. y = x4...Ch. 13.3 - To find: The curvature of y=tanx using Formula 11....Ch. 13.3 - Use Formula 11 to find the curvature. 27. y = x4...Ch. 13.3 - At what point does the curve have maximum...Ch. 13.3 - At what point does the curve have maximum...Ch. 13.3 - Find an equation of a parabola that has curvature...Ch. 13.3 - (a) Is the curvature of the curve C shown in the...Ch. 13.3 - Prob. 38ECh. 13.3 - Prob. 39ECh. 13.3 - Prob. 41ECh. 13.3 - Prob. 42ECh. 13.3 - Prob. 43ECh. 13.3 - Prob. 44ECh. 13.3 - Prob. 45ECh. 13.3 - Prob. 46ECh. 13.3 - Curvature of Plane Parametric Curves The curvature...Ch. 13.3 - Curvature of Plane Parametric Curves The curvature...Ch. 13.3 - Prob. 49ECh. 13.3 - Consider the curvature at x = 0 for each member of...Ch. 13.3 - Prob. 51ECh. 13.3 - Prob. 52ECh. 13.3 - Find equations of the normal plane and osculating...Ch. 13.3 - Find equations of the normal plane and osculating...Ch. 13.3 - Find equations of the osculating circles of the...Ch. 13.3 - Prob. 56ECh. 13.3 - At what point on the curve x = t3, y = 3t, z = t4...Ch. 13.3 - Find equations of the normal and osculating planes...Ch. 13.3 - Prob. 60ECh. 13.3 - Prob. 61ECh. 13.3 - Prob. 62ECh. 13.3 - Show that the curvature is related to the tangent...Ch. 13.3 - Prob. 64ECh. 13.3 - Prob. 65ECh. 13.3 - Prob. 66ECh. 13.3 - Use Formula 14 to find the torsion at the given...Ch. 13.3 - Prob. 68ECh. 13.3 - Prob. 69ECh. 13.3 - Prob. 70ECh. 13.3 - Prob. 71ECh. 13.3 - Frenet-Serret Formulas The following formulas,...Ch. 13.3 - Show that the circular helix r(t)=acost,asint,bt ,...Ch. 13.3 - Find the curvature and torsion of the curve x =...Ch. 13.3 - The DNA molecule has the shape of a double helix...Ch. 13.4 - The table gives coordinates of a particle moving...Ch. 13.4 - Prob. 2ECh. 13.4 - Prob. 3ECh. 13.4 - Prob. 4ECh. 13.4 - Prob. 5ECh. 13.4 - Prob. 6ECh. 13.4 - Prob. 7ECh. 13.4 - Find the velocity, acceleration, and speed of a...Ch. 13.4 - Prob. 9ECh. 13.4 - Prob. 10ECh. 13.4 - Find the velocity, acceleration, and speed of a...Ch. 13.4 - Find the velocity, acceleration, and speed of a...Ch. 13.4 - Find the velocity, acceleration, and speed of a...Ch. 13.4 - Find the velocity and position vectors of a...Ch. 13.4 - Find the velocity and position vectors of a...Ch. 13.4 - Find the velocity and position vectors of a...Ch. 13.4 - The position function of a particle is given by...Ch. 13.4 - What force is required so that a particle of mass...Ch. 13.4 - A force with magnitude 20 N acts directly upward...Ch. 13.4 - Show that if a particle moves with constant speed,...Ch. 13.4 - A projectile is fired with an initial speed of 200...Ch. 13.4 - Rework Exercise 23 if the projectile is fired from...Ch. 13.4 - A ball is thrown at an angle of 45 to the ground....Ch. 13.4 - A projectile is tired from a tank with initial...Ch. 13.4 - A rifle is fired with angle of elevation 36. What...Ch. 13.4 - Prob. 28ECh. 13.4 - A medieval city has the shape of a square and is...Ch. 13.4 - Show that a projectile reaches three-quarters of...Ch. 13.4 - A ball is thrown eastward into the air from the...Ch. 13.4 - A ball with mass 0.8 kg is thrown southward into...Ch. 13.4 - Another reasonable model for the water speed of...Ch. 13.4 - Prob. 35ECh. 13.4 - (a) If a particle moves along a straight line,...Ch. 13.4 - Prob. 37ECh. 13.4 - Prob. 38ECh. 13.4 - Find the tangential and normal components of the...Ch. 13.4 - Prob. 40ECh. 13.4 - Find the tangential and normal components of the...Ch. 13.4 - Prob. 42ECh. 13.4 - The position function of a spaceship is...Ch. 13.4 - A rocket burning its onboard fuel while moving...Ch. 13.4 - Prob. 1APCh. 13.4 - Prob. 3APCh. 13 - Prob. 1CCCh. 13 - Prob. 2CCCh. 13 - Prob. 3CCCh. 13 - Prob. 4CCCh. 13 - Prob. 5CCCh. 13 - (a) What is the definition of curvature? (b) Write...Ch. 13 - Prob. 7CCCh. 13 - Prob. 8CCCh. 13 - State Keplers Laws.Ch. 13 - Prob. 1TFQCh. 13 - Prob. 2TFQCh. 13 - Prob. 3TFQCh. 13 - Prob. 4TFQCh. 13 - Prob. 5TFQCh. 13 - Prob. 6TFQCh. 13 - Prob. 7TFQCh. 13 - Determine whether the statement is true or false....Ch. 13 - Determine whether the statement is true or false....Ch. 13 - Prob. 10TFQCh. 13 - Prob. 11TFQCh. 13 - Determine whether the statement is true or false....Ch. 13 - Determine whether the statement is true or false....Ch. 13 - Prob. 14TFQCh. 13 - Prob. 15TFQCh. 13 - (a) Sketch the curve with vector function r(t) = t...Ch. 13 - Let r(t) = 2-t, (et 1)/t, ln(t + 1). (a) Find the...Ch. 13 - Prob. 3ECh. 13 - Find parametric equations for the tangent line to...Ch. 13 - If r(t) = t2 i + t cos t j + sin t k, evaluate...Ch. 13 - Prob. 6ECh. 13 - Prob. 7ECh. 13 - Prob. 8ECh. 13 - The helix r1(t) = cos t i + sin t j + t k...Ch. 13 - Prob. 10ECh. 13 - For the curve given by r(t) = sin3 t, cos3 t, sin2...Ch. 13 - Find the curvature of the ellipse x = 3 cos t, y =...Ch. 13 - Find the curvature of the curve y = x4 at the...Ch. 13 - Find an equation of the osculating circle of the...Ch. 13 - Find an equation of the osculating plane of the...Ch. 13 - The figure shows the curve C traced by a particle...Ch. 13 - A particle moves with position function r(t) = t...Ch. 13 - Find the velocity, speed, and acceleration of a...Ch. 13 - A particle starts at the origin with initial...Ch. 13 - An athlete throws a shot at an angle of 45 to the...Ch. 13 - A projectile is launched with an initial speed of...Ch. 13 - Prob. 22ECh. 13 - Prob. 23ECh. 13 - PROBLEM PLUS FIGURE FOR PROBLEM 1 1. A particle P...Ch. 13 - A projectile is fired from the origin with angle...Ch. 13 - (a) A projectile it fired from the origin down an...Ch. 13 - A ball rolls off a table with a speed of 2 ft/s....Ch. 13 - Find the curvature of the curve with parametric...Ch. 13 - If a projectile is fired with angle of elevation ...Ch. 13 - A cable has radius r and length L and is wound...Ch. 13 - Prob. 9PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- 15. Please solve this and show each and every step please. PLEASE no chatgpt can I have a real person solve it please!! I am stuck. I am doing pratice problems and I do not even know where to start with this. The question is Please compute the indicated functional value.arrow_forwardUse a graph of f to estimate lim f(x) or to show that the limit does not exist. Evaluate f(x) near x = a to support your conjecture. Complete parts (a) and (b). x-a f(x)= 1 - cos (4x-4) 3(x-1)² ; a = 1 a. Use a graphing utility to graph f. Select the correct graph below.. A. W → ✓ Each graph is displayed in a [- 1,3] by [0,5] window. B. in ✓ ○ C. und ☑ Use the graphing utility to estimate lim f(x). Select the correct choice below and, if necessary, fill in the answer box to complete your choice. x-1 ○ A. The limit appears to be approximately ☐ . (Round to the nearest tenth as needed.) B. The limit does not exist. b. Evaluate f(x) for values of x near 1 to support your conjecture. X 0.9 0.99 0.999 1.001 1.01 1.1 f(x) ○ D. + ☑ (Round to six decimal places as needed.) Does the table from the previous step support your conjecture? A. No, it does not. The function f(x) approaches a different value in the table of values than in the graph, after the approached values are rounded to the…arrow_forwardx²-19x+90 Let f(x) = . Complete parts (a) through (c) below. x-a a. For what values of a, if any, does lim f(x) equal a finite number? Select the correct choice below and, if necessary, fill in the answer box to complete your choice. x→a+ ○ A. a= (Type an integer or a simplified fraction. Use a comma to separate answers as needed.) B. There are no values of a for which the limit equals a finite number. b. For what values of a, if any, does lim f(x) = ∞o? Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. x→a+ A. (Type integers or simplified fractions) C. There are no values of a that satisfy lim f(x) = ∞. + x-a c. For what values of a, if any, does lim f(x) = -∞0? Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. x→a+ A. Either a (Type integers or simplified fractions) B.arrow_forwardSketch a possible graph of a function f, together with vertical asymptotes, that satisfies all of the following conditions. f(2)=0 f(4) is undefined lim f(x)=1 X-6 lim f(x) = -∞ x-0+ lim f(x) = ∞ lim f(x) = ∞ x-4 _8arrow_forwardDetermine the following limit. lim 35w² +8w+4 w→∞ √49w+w³ 3 Select the correct choice below, and, if necessary, fill in the answer box to complete your choice. ○ A. lim W→∞ 35w² +8w+4 49w+w3 (Simplify your answer.) B. The limit does not exist and is neither ∞ nor - ∞.arrow_forwardCalculate the limit lim X-a x-a 5 using the following factorization formula where n is a positive integer and x-➡a a is a real number. x-a = (x-a) (x1+x-2a+x lim x-a X - a x-a 5 = n- + xa an-2 + an−1)arrow_forwardThe function s(t) represents the position of an object at time t moving along a line. Suppose s(1) = 116 and s(5)=228. Find the average velocity of the object over the interval of time [1,5]. The average velocity over the interval [1,5] is Vav = (Simplify your answer.)arrow_forwardFor the position function s(t) = - 16t² + 105t, complete the following table with the appropriate average velocities. Then make a conjecture about the value of the instantaneous velocity at t = 1. Time Interval Average Velocity [1,2] Complete the following table. Time Interval Average Velocity [1, 1.5] [1, 1.1] [1, 1.01] [1, 1.001] [1,2] [1, 1.5] [1, 1.1] [1, 1.01] [1, 1.001] ப (Type exact answers. Type integers or decimals.) The value of the instantaneous velocity at t = 1 is (Round to the nearest integer as needed.)arrow_forwardFind the following limit or state that it does not exist. Assume b is a fixed real number. (x-b) 40 - 3x + 3b lim x-b x-b ... Select the correct choice below and, if necessary, fill in the answer box to complete your choice. (x-b) 40 -3x+3b A. lim x-b x-b B. The limit does not exist. (Type an exact answer.)arrow_forwardx4 -289 Consider the function f(x) = 2 X-17 Complete parts a and b below. a. Analyze lim f(x) and lim f(x), and then identify the horizontal asymptotes. x+x X--∞ lim 4 X-289 2 X∞ X-17 X - 289 lim = 2 ... X∞ X - 17 Identify the horizontal asymptotes. Select the correct choice and, if necessary, fill in the answer box(es) to complete your choice. A. The function has a horizontal asymptote at y = B. The function has two horizontal asymptotes. The top asymptote is y = and the bottom asymptote is y = ☐ . C. The function has no horizontal asymptotes. b. Find the vertical asymptotes. For each vertical asymptote x = a, evaluate lim f(x) and lim f(x). Select the correct choice and, if necessary, fill in the answer boxes to complete your choice. earrow_forwardExplain why lim x²-2x-35 X-7 X-7 lim (x+5), and then evaluate lim X-7 x² -2x-35 x-7 x-7 Choose the correct answer below. A. x²-2x-35 The limits lim X-7 X-7 and lim (x+5) equal the same number when evaluated using X-7 direct substitution. B. Since each limit approaches 7, it follows that the limits are equal. C. The numerator of the expression X-2x-35 X-7 simplifies to x + 5 for all x, so the limits are equal. D. Since x²-2x-35 X-7 = x + 5 whenever x 7, it follows that the two expressions evaluate to the same number as x approaches 7. Now evaluate the limit. x²-2x-35 lim X-7 X-7 = (Simplify your answer.)arrow_forwardA function f is even if f(x) = f(x) for all x in the domain of f. If f is even, with lim f(x) = 4 and x-6+ lim f(x)=-3, find the following limits. X-6 a. lim f(x) b. +9-←x lim f(x) X-6 a. lim f(x)= +9-←x (Simplify your answer.) b. lim f(x)= X→-6 (Simplify your answer.) ...arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningChain Rule dy:dx = dy:du*du:dx; Author: Robert Cappetta;https://www.youtube.com/watch?v=IUYniALwbHs;License: Standard YouTube License, CC-BYCHAIN RULE Part 1; Author: Btech Maths Hub;https://www.youtube.com/watch?v=TIAw6AJ_5Po;License: Standard YouTube License, CC-BY