
Discrete Mathematics and Its Applications ( 8th International Edition ) ISBN:9781260091991
8th Edition
ISBN: 9781259676512
Author: Kenneth H Rosen
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 13.2, Problem 20E
To determine
To construct:
The state diagram for the moore machine with the given table.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Exercises
Evaluate the following limits.
1. lim cot x/ln x
+01x
2. lim x² In x
+014
3. lim x*
x0+
4. lim (cos√√x)1/x
+014
5. lim x2/(1-cos x)
x10
6. lim e*/*
818
7. lim (secx - tan x)
x-x/2-
8. lim [1+(3/x)]*
x→∞0
In Exercises 1 through 3, let xo =
O and calculate P7(x) and R7(x).
1. f(x)=sin x, x in R.
2. f(x) = cos x, x in R.
3. f(x) = In(1+x), x≥0.
4. In Exercises 1, 2, and 3, for |x| 1, calculate a value of n such that P(x)
approximates f(x) to within 10-6.
5. Let (an)neN be a sequence of positive real numbers such that L =
lim (an+1/an) exists in R. If L < 1, show that an → 0. [Hint: Let
1111
L
iation
7. Let f be continuous on [a, b] and differentiable on (a, b). If lim f'(x)
xia
exists in R, show that f is differentiable at a and f'(a) = lim f'(x). A
similar result holds for b.
x-a
8. In reference to Corollary 5.4, give an example of a uniformly continuous
function on [0, 1] that is differentiable on (0, 1] but whose derivative is not
bounded there.
9. Recall that a fixed point of a function f is a point c such that f(c) = c.
(a) Show that if f is differentiable on R and f'(x)| x if x 1 and hence In(1+x) 0.
12. For 0 л/2. (Thus,
as x л/2 from the left, cos x is never large enough for x+cosx to be
greater than л/2 and cot x is never small enough for x + cot x to be less
than x/2.)
Chapter 13 Solutions
Discrete Mathematics and Its Applications ( 8th International Edition ) ISBN:9781260091991
Ch. 13.1 - Exercises 1-3 refer to the grammar with start...Ch. 13.1 - Exercises 1-3 refer to the grammar with start...Ch. 13.1 - Prob. 3ECh. 13.1 - Let G=(V,T,S,P) be the phrase-structure grammar...Ch. 13.1 - Prob. 5ECh. 13.1 - Prob. 6ECh. 13.1 - Prob. 7ECh. 13.1 - Show that the grammar given in Example 5 generates...Ch. 13.1 - Prob. 9ECh. 13.1 - Prob. 10E
Ch. 13.1 - Construct a derivation of 021222 in the grammar...Ch. 13.1 - Show that the grammar given in Example 7 generates...Ch. 13.1 - s13. Find a phrase-structure grammar for each of...Ch. 13.1 - Find a phrase-structure grammar for each of these...Ch. 13.1 - Find a phrase-structure grammar for each of these...Ch. 13.1 - Construct phrase-structure grammars to generate...Ch. 13.1 - Construct phrase-structure grammars to generate...Ch. 13.1 - Construct phrase-structure grammars to generate...Ch. 13.1 - Prob. 19ECh. 13.1 - A palindrome is a string that reads the same...Ch. 13.1 - Let G1 and G2 be context-free grammars, generating...Ch. 13.1 - Prob. 22ECh. 13.1 - Construct derivation trees for the sentences in...Ch. 13.1 - Let G be the grammar with V={a,b,c,S};T={a,b,c} ;...Ch. 13.1 - Prob. 25ECh. 13.1 - Prob. 26ECh. 13.1 - Prob. 27ECh. 13.1 - a) Explain what the productions are in a grammar...Ch. 13.1 - Prob. 29ECh. 13.1 - a) Construct a phrasestructure grammar for the set...Ch. 13.1 - Give production rules in Backus-Naur form for an...Ch. 13.1 - Prob. 32ECh. 13.1 - Prob. 33ECh. 13.1 - Prob. 34ECh. 13.1 - Prob. 35ECh. 13.1 - Prob. 36ECh. 13.1 - Prob. 37ECh. 13.1 - Prob. 38ECh. 13.1 - Prob. 39ECh. 13.1 - Prob. 40ECh. 13.1 - Prob. 41ECh. 13.1 - Let G be a grammar and let R be the relation...Ch. 13.2 - Draw the state diagrams for the finite-state...Ch. 13.2 - Give the state tables for the finite-state machine...Ch. 13.2 - Find the output generated from the input string...Ch. 13.2 - Find the output generated from the input string...Ch. 13.2 - Find the output for each of these input strings...Ch. 13.2 - Find the output for each of these input strings...Ch. 13.2 - Construct a finite-state machine that models an...Ch. 13.2 - Prob. 8ECh. 13.2 - Construct a finite-state machine that delays an...Ch. 13.2 - Construct a finite-state machine that changes...Ch. 13.2 - Construct a finite-state machine for the log-on...Ch. 13.2 - Construct a finite-state machine for lock that...Ch. 13.2 - Construct a finite-state machine for a toll...Ch. 13.2 - Construct a finite-state machine for entering a...Ch. 13.2 - Construct a finite-state machine for a restricted...Ch. 13.2 - Construct a finite-state machine that gives an...Ch. 13.2 - Prob. 17ECh. 13.2 - Construct a finite-state machine that determines...Ch. 13.2 - Construct a finite-state machine that determines...Ch. 13.2 - Prob. 20ECh. 13.2 - Prob. 21ECh. 13.2 - Find the output string generated by the Moore...Ch. 13.2 - Prob. 23ECh. 13.2 - Construct a Moore machine that gives an output of...Ch. 13.2 - Prob. 25ECh. 13.3 - Prob. 1ECh. 13.3 - 2. Show that if A is a set of strings, then.
Ch. 13.3 - Find all pairs of sets of strings A and B for...Ch. 13.3 - Show that these equalities hold. a) {}*={} b)...Ch. 13.3 - Prob. 5ECh. 13.3 - Prob. 6ECh. 13.3 - Prob. 7ECh. 13.3 - Prob. 8ECh. 13.3 - Prob. 9ECh. 13.3 - Determine whether the string 01001 is in each of...Ch. 13.3 - Determine whether each of these strings is...Ch. 13.3 - Determine whether each of these strings is...Ch. 13.3 - Determine whether all the strings in each of these...Ch. 13.3 - Show that if M=(S,I,f,so,F) is a deterministic...Ch. 13.3 - Given a finite-state automaton M=(S,I,f,so,F) ,...Ch. 13.3 - In Exercises 16—22 find the language recognized by...Ch. 13.3 - In Exercises 16—22 find the language recognized by...Ch. 13.3 - Prob. 18ECh. 13.3 - Prob. 19ECh. 13.3 - In Exercises 16—22 find the language recognized by...Ch. 13.3 - In Exercises 16—22 find the language recognized by...Ch. 13.3 - Prob. 22ECh. 13.3 - Construct a deterministic finite-state automaton...Ch. 13.3 - Construct a deterministic finite-state automaton...Ch. 13.3 - Construct a deterministic finite-state automaton...Ch. 13.3 - Construct a deterministic finite-state automaton...Ch. 13.3 - Prob. 27ECh. 13.3 - Construct a deterministic finite-state automaton...Ch. 13.3 - Prob. 29ECh. 13.3 - Construct a deterministic finite-state automaton...Ch. 13.3 - Construct a deterministic finite-state automaton...Ch. 13.3 - Construct a deterministic finite-state automaton...Ch. 13.3 - Prob. 33ECh. 13.3 - Prob. 34ECh. 13.3 - Prob. 35ECh. 13.3 - Prob. 36ECh. 13.3 - Prob. 37ECh. 13.3 - Prob. 38ECh. 13.3 - Prob. 39ECh. 13.3 - Use Exercise 39 finite-state automata constructed...Ch. 13.3 - Prob. 41ECh. 13.3 - Prob. 42ECh. 13.3 - Prob. 43ECh. 13.3 - Prob. 44ECh. 13.3 - Prob. 45ECh. 13.3 - In Exercises 43-49 find the language recognized by...Ch. 13.3 - Prob. 47ECh. 13.3 - In Exercises 43-49 find the language recognized by...Ch. 13.3 - Prob. 49ECh. 13.3 - Find a deterministic finite-state automaton that...Ch. 13.3 - Prob. 51ECh. 13.3 - Find a deterministic finite-state automaton that...Ch. 13.3 - Find a deterministic finite-state automaton that...Ch. 13.3 - Find a deterministic finite-state automaton that...Ch. 13.3 - Find a deterministic finite-state automaton that...Ch. 13.3 - Find a nondeterministic finite-state automaton...Ch. 13.3 - Prob. 57ECh. 13.3 - Prob. 58ECh. 13.3 - Prob. 59ECh. 13.3 - Prob. 60ECh. 13.3 - Prob. 61ECh. 13.3 - Prob. 62ECh. 13.4 - Describe in words the strings in each of these...Ch. 13.4 - Prob. 2ECh. 13.4 - Prob. 3ECh. 13.4 - Prob. 4ECh. 13.4 - Express each of these sets using a regular...Ch. 13.4 - Express each of these sets using a regular...Ch. 13.4 - Express each of these sets using a regular...Ch. 13.4 - Construct deterministic finite-state automata that...Ch. 13.4 - Construct nondeterministic finite-state automata...Ch. 13.4 - Construct nondeterministic finite-state automata...Ch. 13.4 - Show that if A is a regular set, then AR, the set...Ch. 13.4 - Using the construction described in the proof of...Ch. 13.4 - Using the construction described in the proof of...Ch. 13.4 - Construct a nondeterministic finite-state...Ch. 13.4 - In Exercises 15-17 conflict a regular grammar...Ch. 13.4 - In Exercises 15-17 conflict a regular grammar...Ch. 13.4 - In Exercises 15-17 conflict a regular grammar...Ch. 13.4 - Show that the finite-state automaton constructed...Ch. 13.4 - Show that the regular grammar constructed from a...Ch. 13.4 - Show that every nondeterministic finite-state...Ch. 13.4 - Let M=(S,I,f,s0,F) be a deterministic finite-state...Ch. 13.4 - One important technique used to prove that certain...Ch. 13.4 - Show that the set 02n1nn=0,1,2,... is not regular...Ch. 13.4 - Show that the set {1n2n=0,1,2,...} is not regular...Ch. 13.4 - Show that the set of palindromes over {0, 1} is...Ch. 13.4 - Prob. 26ECh. 13.4 - Prob. 27ECh. 13.4 - Prob. 28ECh. 13.4 - Prob. 29ECh. 13.4 - Prob. 30ECh. 13.4 - Use Exercise 29 to show that the language...Ch. 13.5 - Let T be the Turing machine defined by the...Ch. 13.5 - Let T be the Turing machine defined by the...Ch. 13.5 - What does the Turing machine defined by the...Ch. 13.5 - What does the Turing machine described by the...Ch. 13.5 - What does the Turing machine described by the...Ch. 13.5 - Construct a Turing machine with tape 0, 1, and B...Ch. 13.5 - Construct a Turning machine with tape symbols 0,...Ch. 13.5 - Construct a Turing machine with tape symbols 0, 1,...Ch. 13.5 - Construct a Turing machine with tape symbols 0, 1,...Ch. 13.5 - Construct a Turing machine with tape symbols 0, 1,...Ch. 13.5 - Construct a Turing machine that recognizes the set...Ch. 13.5 - Construct a Turing machine that recognizes the set...Ch. 13.5 - Construct a Turing machine that recognizes the set...Ch. 13.5 - Show at each step the contents of the tape of the...Ch. 13.5 - Explain why the Turing machine in Example 3...Ch. 13.5 - Construct a Turing machine that recognizes the set...Ch. 13.5 - Construct a Turing machine that recognizes the set...Ch. 13.5 - Construct a Turing machine that computes the...Ch. 13.5 - Construct a Turing machine that computes the...Ch. 13.5 - Construct a Turing machine that computes the...Ch. 13.5 - Construct a Turing machine that computes the...Ch. 13.5 - Construct a Turing machine that computes the...Ch. 13.5 - Construct a Turing machine that computes the...Ch. 13.5 - Construct a Turing machine that computes the...Ch. 13.5 - Construct a Turing machine that computes the...Ch. 13.5 - Construct a Turning machine that computes the...Ch. 13.5 - Prob. 27ECh. 13.5 - Prob. 28ECh. 13.5 - Which of the following problems is a decision...Ch. 13.5 - Which of the following problems is a decision...Ch. 13.5 - Prob. 31ECh. 13.5 - Show that the function B(n) cannot be computed by...Ch. 13 - a) Define a phrase-structure grammar. b) What does...Ch. 13 - a) What is the language generated by a...Ch. 13 - Prob. 3RQCh. 13 - Prob. 4RQCh. 13 - Prob. 5RQCh. 13 - a) What is a finite-state machine? b) Show how a...Ch. 13 - Prob. 7RQCh. 13 - Prob. 8RQCh. 13 - Prob. 9RQCh. 13 - Prob. 10RQCh. 13 - a) Define a nondeterministic finite-state...Ch. 13 - a) Define the set of regular expressions over a...Ch. 13 - Prob. 13RQCh. 13 - Prob. 14RQCh. 13 - Prob. 15RQCh. 13 - Prob. 16RQCh. 13 - Describe how Turing machines are used to recognize...Ch. 13 - Prob. 18RQCh. 13 - Prob. 19RQCh. 13 - Prob. 1SECh. 13 - Prob. 2SECh. 13 - Prob. 3SECh. 13 - Prob. 4SECh. 13 - Prob. 5SECh. 13 - Prob. 6SECh. 13 - Prob. 7SECh. 13 - Prob. 8SECh. 13 - Prob. 9SECh. 13 - Prob. 10SECh. 13 - Prob. 11SECh. 13 - Prob. 12SECh. 13 - Prob. 13SECh. 13 - Construct a finite-state machine with output that...Ch. 13 - Construct a finite-state machine with output that...Ch. 13 - Prob. 16SECh. 13 - Prob. 17SECh. 13 - Prob. 18SECh. 13 - Construct a deterministic finite-state automaton...Ch. 13 - Prob. 20SECh. 13 - Prob. 21SECh. 13 - Prob. 22SECh. 13 - Prob. 23SECh. 13 - Prob. 24SECh. 13 - Prob. 25SECh. 13 - Show that {02nnN} is not regular. You may use the...Ch. 13 - Prob. 27SECh. 13 - Prob. 28SECh. 13 - Construct a Turing machine that computes the...Ch. 13 - Prob. 30SECh. 13 - Prob. 1CPCh. 13 - Prob. 2CPCh. 13 - Prob. 3CPCh. 13 - Prob. 4CPCh. 13 - Given the state table of a Moore machine and an...Ch. 13 - Given the state table of a Mealy machine and an...Ch. 13 - Given the state table of a deterministic...Ch. 13 - Prob. 8CPCh. 13 - Prob. 9CPCh. 13 - Prob. 10CPCh. 13 - Given a regular grammar, construct a finite-state...Ch. 13 - Given a finite-state automaton, construct a...Ch. 13 - Prob. 13CPCh. 13 - Solve the busy beaver problem for two states by...Ch. 13 - Prob. 2CAECh. 13 - Prob. 3CAECh. 13 - Prob. 4CAECh. 13 - Prob. 5CAECh. 13 - Prob. 1WPCh. 13 - Describe the Backus-Naur form (and extended...Ch. 13 - Explain how finite-state machines are used by...Ch. 13 - Explain how finite-state machines are used in the...Ch. 13 - Explain how finite-state machines are used in...Ch. 13 - Compare the use of Moore machines versus Mealy...Ch. 13 - Explain the concept of minimizing finite-state...Ch. 13 - Give the definition of cellular automata, Explain...Ch. 13 - Define a pushdown automaton. Explain how pushdown...Ch. 13 - Define a linear-bounded automaton. Explain how...Ch. 13 - Prob. 11WPCh. 13 - Prob. 12WPCh. 13 - Prob. 13WPCh. 13 - Show that a Turing machine can simulate any action...Ch. 13 - Prob. 15WPCh. 13 - Describe the basic concepts of the lambda-calculus...Ch. 13 - Show that a Turing machine as defined in this...Ch. 13 - Prob. 18WP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Construct a histogram for the spot weld shear strength datain Exercise 6.2.9. Comment on the shape of the histogram. Doesit convey the same information as the stem-and-leaf display? Reference: Exercise 6.2.9 is found in the image attached belowarrow_forward1. Show that f(x) = x3 is not uniformly continuous on R. 2. Show that f(x) = 1/(x-2) is not uniformly continuous on (2,00). 3. Show that f(x)=sin(1/x) is not uniformly continuous on (0,л/2]. 4. Show that f(x) = mx + b is uniformly continuous on R. 5. Show that f(x) = 1/x2 is uniformly continuous on [1, 00), but not on (0, 1]. 6. Show that if f is uniformly continuous on [a, b] and uniformly continuous on D (where D is either [b, c] or [b, 00)), then f is uniformly continuous on [a, b]U D. 7. Show that f(x)=√x is uniformly continuous on [1, 00). Use Exercise 6 to conclude that f is uniformly continuous on [0, ∞). 8. Show that if D is bounded and f is uniformly continuous on D, then fis bounded on D. 9. Let f and g be uniformly continuous on D. Show that f+g is uniformly continuous on D. Show, by example, that fg need not be uniformly con- tinuous on D. 10. Complete the proof of Theorem 4.7. 11. Give an example of a continuous function on Q that cannot be continuously extended to R. 12.…arrow_forward3. Explain why the following statements are not correct. a. "With my methodological approach, I can reduce the Type I error with the given sample information without changing the Type II error." b. "I have already decided how much of the Type I error I am going to allow. A bigger sample will not change either the Type I or Type II error." C. "I can reduce the Type II error by making it difficult to reject the null hypothesis." d. "By making it easy to reject the null hypothesis, I am reducing the Type I error."arrow_forward
- The 2004 presidential election exit polls from the critical state of Ohio provided the following results. The exit polls had 2020 respondents, 768 of whom were college graduates. Ofthe college graduates, 412 voted for George Bush.a. Calculate a 95% confidence interval for the proportion ofcollege graduates in Ohio who voted for George Bush.b. Calculate a 95% lower confidence bound for the proportion of college graduates in Ohio who voted for George Bush.arrow_forward1. The yield of a chemical process is being studied. From previous experience, yield is known to be normally distributed and σ = 3. The past 5 days of plant operation have resulted in the following percent yields: 91.6, 88.75, 90.8, 89.95, and 91.3. Find a 95% two-sided confidence interval on the true mean yield. 2. A research engineer for a tire manufacturer is investigating tire life for a new rubber compound and has built 16 tires and tested them to end-of-life in a road test. The sample mean and standard deviation are 60,139.7 and 3645.94 kilometers. Find a 95% confidence interval on mean tire lifearrow_forwardThe following two questions appear on an employee survey questionnaire. Each answer is chosen from the five-point scale 1 (never), 2, 3, 4, 5 (always).Is the corporation willing to listen to and fairly evaluatenew ideas?How often are my coworkers important in my overall jobperformance?arrow_forward
- Cloud seeding, a process in which chemicals such as silver iodide and frozen carbon dioxide are introduced by aircraft into clouds to promote rainfall, was widely used in the 20th century. Recent research has questioned its effectiveness [“Reassessment of Rain Enhancement Experiments and Operations in Israel Including Synoptic Considerations,” Journal of Atmospheric Research (2010, Vol. 97(4), pp. 513–525)]. An experiment was performed by randomly assigning 52 clouds to be seeded or not. The amount of rain generated was then measured in acre-feet. Here are the data for the unseeded and seeded clouds: Unseeded: 81.2 26.1 95.0 41.1 28.6 21.7 11.5 68.5 345.5 321.2 1202.6 1.0 4.9 163.0 372.4 244.3 47.3 87.0 26.3 24.4 830.1 4.9 36.6 147.8 17.3 29.0 Seeded: 274.7 302.8 242.5 255.0 17.5 115.3 31.4 703.4 334.1 1697.8 118.3 198.6 129.6 274.7 119.0 1656.0 7.7 430.0 40.6 92.4 200.7 32.7 4.1 978.0 489.1 2745.6 Find the sample mean, sample standard deviation, and range of rainfall for a. All 52…arrow_forwardAnswer questions 7.2.7 and 7.3.5 respectivelyarrow_forward6.2.8 WP The female students in an undergraduate engineering core course at ASU self-reported their heights to the nearest inch. The data follow. Construct a stem-and-leaf diagram for the height data and comment on any important features that you notice. Cal- culate the sample mean, the sample standard deviation, and the sample median of height. 62 64 61 67 65 68 61 65 60 65 64 63 59 68 64 66 68 69 65 67 62 66 68 67 66 65 69 65 69 65 67 67 65 63 64 67 65arrow_forward
- 1. The sample space of a random experiment is {a, b, c,d, e} with probabilities 0.1, 0.1, 0.2, 0.4, and 0.2, respectively.Let A denote the event {a, b, c}, and let B denote the event{c, d, e}. Determine the following:a. P(A)b. P(B)c. P(A′)d. P(A ∪ B)e. P(A ∩ B) 2. Suppose that P(A | B) = 0.2, P(A | B′) = 0.3, and P(B) = 0.8. What is P(A)?arrow_forwardcan I see the steps for how you got the same answers already provided for μ1->μ4. this is a homework that provide you answers for question after attempting it three triesarrow_forward1. Prove that for each n in N, 1+2++ n = n(n+1)/2. 2. Prove that for each n in N, 13 +23+ 3. Prove that for each n in N, 1+3+5+1 4. Prove that for each n ≥ 4,2" -1, then (1+x)" ≥1+nx for each n in N. 11. Prove DeMoivre's Theorem: fort a real number, (cost+i sint)" = cos nt + i sinnt for each n in N, where i = √√-1.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning

Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Finite State Machine (Finite Automata); Author: Neso Academy;https://www.youtube.com/watch?v=Qa6csfkK7_I;License: Standard YouTube License, CC-BY
Finite State Machine (Prerequisites); Author: Neso Academy;https://www.youtube.com/watch?v=TpIBUeyOuv8;License: Standard YouTube License, CC-BY