MYMATHLAB F/THINKING MATHEMATICALLY>CU
18th Edition
ISBN: 9780135315811
Author: Pearson
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Question
Chapter 13.2, Problem 19E
(a)
To determine
To calculate: Winner using plurality method.
(b)
To determine
Whether majority criterion is satisfied or not.
(c)
To determine
Whether head-to-head count is satisfied or not.
(d)
To determine
To calculate: Construct a preference table to determine the winner.
(e)
To determine
To calculate: New winner if C drops out using plurality method and whether irrelevant alternatives criterion satisfies.
(f)
To determine
Whether the results of (b) and (c) contradicts arrow’s impossibility theorem.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Given the sample space:
ΩΞ
= {a,b,c,d,e,f}
and events:
{a,b,e,f}
A = {a, b, c, d}, B = {c, d, e, f}, and C = {a, b, e, f}
For parts a-c: determine the outcomes in each of the provided sets. Use proper set
notation.
a.
(ACB)
C
(AN (BUC) C) U (AN (BUC))
AC UBC UCC
b.
C.
d.
If the outcomes in 2 are equally likely, calculate P(AN BNC).
H-/ test the Series
1.12
7√2
by ratio best
2n
2-12-
nz
by vitio test
en
In Exercises 1-14, state whether each statement is true or
false. If false, give a reason.
1. The set of stores located in the state of Wyoming is a well-
defined set.
2. The set of the three best songs is a well-defined set.
3. maple = {oak, elm, maple, sycamore}
4{} cơ
5. {3, 6, 9, 12,...} and {2, 4, 6, 8, ...} are disjoint sets.
6. {Mercury, Venus, Earth, Mars} is an example of a set in
roster form.
7. {candle, picture, lamp} = {picture, chair, lamp }
8. {apple, orange, banana, pear} is equivalent to
{tomato, corn, spinach, radish}.
Chapter 13 Solutions
MYMATHLAB F/THINKING MATHEMATICALLY>CU
Ch. 13.1 - CHECK POINT 1 Four candidates are running for...Ch. 13.1 - CHECK POINT 2 Table 13.2 on page 841 shows the...Ch. 13.1 - Prob. 3CPCh. 13.1 - Prob. 4CPCh. 13.1 - CHECK POINT 5 Table 13.2 on page 841 shows the...Ch. 13.1 - Fill in each blank so that the resulting statement...Ch. 13.1 - Fill in each blank so that the resulting statement...Ch. 13.1 - Fill in each blank so that the resulting statement...Ch. 13.1 - Fill in each blank so that the resulting statement...Ch. 13.1 - Fill in each blank so that the resulting statement...
Ch. 13.1 - Prob. 6CVCCh. 13.1 - Fill in each blank so that the resulting statement...Ch. 13.1 - Prob. 8CVCCh. 13.1 - In Exercises 1-2, the preference ballots for three...Ch. 13.1 - In Exercises 1-2, the preference ballots for three...Ch. 13.1 - In Exercises 3-4, four students are running for...Ch. 13.1 - Prob. 4ECh. 13.1 - Your class is given the option of choosing a day...Ch. 13.1 - Prob. 6ECh. 13.1 - Prob. 7ECh. 13.1 - 8. The travel club members are voting for the...Ch. 13.1 - Four professors are running for chair of the...Ch. 13.1 - Prob. 10ECh. 13.1 - Prob. 11ECh. 13.1 - Use the preference table shown in Exercise 8....Ch. 13.1 - Prob. 13ECh. 13.1 - Use the preference table shown in Exercise 10. Who...Ch. 13.1 - Use the preference table shown in Exercise 7....Ch. 13.1 - Use the preference table shown in Exercise 8....Ch. 13.1 - Use the preference table shown in Exercise 9. Who...Ch. 13.1 - Prob. 18ECh. 13.1 - Prob. 19ECh. 13.1 - Prob. 20ECh. 13.1 - In Exercises 19-22, suppose that the pairwise...Ch. 13.1 - Prob. 22ECh. 13.1 - Prob. 23ECh. 13.1 - Prob. 24ECh. 13.1 - Use the preference table shown in Exercise 9. Who...Ch. 13.1 - Prob. 26ECh. 13.1 - In Exercises 27-30, 72 voters are asked to rank...Ch. 13.1 - Prob. 28ECh. 13.1 - In Exercises 27-30, 72 voters are asked to rank...Ch. 13.1 - In Exercises 27-30, 72 voters are asked to rank...Ch. 13.1 - Prob. 31ECh. 13.1 - Prob. 32ECh. 13.1 - Prob. 33ECh. 13.1 - The programmers at the Theater Channel need to...Ch. 13.1 - 35. Five candidates. A, B, C, D, and E, are...Ch. 13.1 - Prob. 36ECh. 13.1 - Prob. 37ECh. 13.1 - Three candidates, A, B, and C, are running for...Ch. 13.1 - What is a preference ballot?Ch. 13.1 - Prob. 40ECh. 13.1 - Prob. 41ECh. 13.1 - 42. Describe the Borda count method. Is it...Ch. 13.1 - What is the plurality-with-elimination method? Why...Ch. 13.1 - What is the pairwise comparison method? Is it...Ch. 13.1 - Prob. 45ECh. 13.1 - Prob. 46ECh. 13.1 - Prob. 47ECh. 13.1 - Prob. 48ECh. 13.1 - Prob. 49ECh. 13.1 - Make Sense? In Exercises 49-52, determine whether...Ch. 13.1 - Make Sense? In Exercises 49-52, determine whether...Ch. 13.1 - Prob. 52ECh. 13.1 - Prob. 53ECh. 13.1 - In Exercises 53-56, construct a preference table...Ch. 13.1 - Prob. 55ECh. 13.1 - In Exercises 53-56, construct a preference table...Ch. 13.1 - 57. Research and present a group report on how...Ch. 13.1 - Research and present a group report on how voting...Ch. 13.2 - CHECK POINT I The 14 members of the school board...Ch. 13.2 - Prob. 2CPCh. 13.2 - CHECK POINT 3 An election with 120 voters and...Ch. 13.2 - Prob. 4CPCh. 13.2 - Fill in each blank so that the resulting statement...Ch. 13.2 - Fill in each blank so that the resulting statement...Ch. 13.2 - Fill in each blank so that the resulting statement...Ch. 13.2 - Prob. 4CVCCh. 13.2 - Prob. 5CVCCh. 13.2 - Fill in each blank so that the resulting statement...Ch. 13.2 - Voters in a small town are considering four...Ch. 13.2 - 2. Fifty-three people are asked to taste-test and...Ch. 13.2 - Prob. 3ECh. 13.2 - Prob. 4ECh. 13.2 - A town is voting on an ordinance dealing with...Ch. 13.2 - A town is voting on an ordinance dealing with...Ch. 13.2 - 7. The following preference table gives the...Ch. 13.2 - Prob. 8ECh. 13.2 - 9. Members of the Student Activity Committee at a...Ch. 13.2 - Prob. 10ECh. 13.2 - Prob. 11ECh. 13.2 - Prob. 12ECh. 13.2 - In Exercises 11-18, the preference table for an...Ch. 13.2 - Prob. 14ECh. 13.2 - In Exercises 11-18, the preference table for an...Ch. 13.2 - In Exercises 11-18, the preference table for an...Ch. 13.2 - In Exercises 11-18, the preference table for an...Ch. 13.2 - Prob. 18ECh. 13.2 - Prob. 19ECh. 13.2 - Describe the majority criterion.Ch. 13.2 - Describe the head-to-head criterion.Ch. 13.2 - Describe the monotonicity criterion.Ch. 13.2 - 23. Describe the irrelevant alternatives...Ch. 13.2 - 24. In your own words, state Arrow’s Impossibility...Ch. 13.2 - Prob. 25ECh. 13.2 - Is it possible to have election results using a...Ch. 13.2 - Prob. 27ECh. 13.2 - Prob. 28ECh. 13.2 - Make Sense? In Exercises 28-31, determine whether...Ch. 13.2 - Prob. 30ECh. 13.2 - Make Sense? In Exercises 28-31, determine whether...Ch. 13.2 - Prob. 32ECh. 13.2 - Prob. 33ECh. 13.2 - Prob. 34ECh. 13.2 - Prob. 35ECh. 13.2 - Citizen-initiated ballot measures often present...Ch. 13.3 - CHECK POINT 1 The Republic of Amador is composed...Ch. 13.3 - CHECK POINT 2 Refer to Check Point 1 on page 865....Ch. 13.3 - Prob. 3CPCh. 13.3 - Prob. 4CPCh. 13.3 - Prob. 5CPCh. 13.3 - Fill in each blank so that the resulting statement...Ch. 13.3 - Fill in each blank so that the resulting statement...Ch. 13.3 - Fill in each blank so that the resulting statement...Ch. 13.3 - Prob. 4CVCCh. 13.3 - Prob. 5CVCCh. 13.3 - Fill in each blank so that the resulting statement...Ch. 13.3 - Fill in each blank so that the resulting statement...Ch. 13.3 - Throughout this Exercise Set, in computing...Ch. 13.3 - Throughout this Exercise Set, in computing...Ch. 13.3 - Throughout this Exercise Set, in computing...Ch. 13.3 - Throughout this Exercise Set, in computing...Ch. 13.3 - A university is composed of five schools. The...Ch. 13.3 - Prob. 6ECh. 13.3 - 7. A small country is composed of five states. A,...Ch. 13.3 - 8. A small country is comprised of four states, A,...Ch. 13.3 - Prob. 9ECh. 13.3 - Prob. 10ECh. 13.3 - The police department in a large city has 180 new...Ch. 13.3 - Prob. 12ECh. 13.3 - Prob. 13ECh. 13.3 - Prob. 14ECh. 13.3 - 15. Twenty sections of bilingual math courses,...Ch. 13.3 - Prob. 16ECh. 13.3 - A rapid transit service operates 200 buses along...Ch. 13.3 - Refer to Exercise 11. Use Webster’s method to...Ch. 13.3 - A hospital has a nursing staff of 250 nurses...Ch. 13.3 - A hospital has a nursing staff of 250 nurses...Ch. 13.3 - A hospital has a nursing staff of 250 nurses...Ch. 13.3 - A hospital has a nursing staff of 250 nurses...Ch. 13.3 - The table shows the 1790 United States census. In...Ch. 13.3 - Prob. 24ECh. 13.3 - Prob. 25ECh. 13.3 - Prob. 26ECh. 13.3 - 27. Describe how to find a standard divisor.
Ch. 13.3 - 28. Describe how to determine a standard quota for...Ch. 13.3 - Prob. 29ECh. 13.3 - Prob. 30ECh. 13.3 - Describe the apportionment problem.Ch. 13.3 - Prob. 32ECh. 13.3 - Prob. 33ECh. 13.3 - Explain why Hamilton’s method satisfies the quota...Ch. 13.3 - Prob. 35ECh. 13.3 - Suppose that you guess at a modified divisor, d,...Ch. 13.3 - Describe the difference between the modified...Ch. 13.3 - In allocating congressional seats, how does...Ch. 13.3 - 39. How are modified quotas rounded using...Ch. 13.3 - Why might it take longer to guess at a modified...Ch. 13.3 - In this Exercise Set, we have used apportionment...Ch. 13.3 - Prob. 42ECh. 13.3 - Make Sense? In Exercises 42-45, determine whether...Ch. 13.3 - Make Sense? In Exercises 42-45, determine whether...Ch. 13.3 - Prob. 45ECh. 13.3 - Prob. 46ECh. 13.3 - Prob. 47ECh. 13.3 - Prob. 48ECh. 13.3 - A small country is composed of three states, A, B,...Ch. 13.3 - Prob. 50ECh. 13.3 - Research and present a group| report on a brief...Ch. 13.4 - CHECK POINT I Table 13.42 shows the populations of...Ch. 13.4 - CHECK POINT 2 A small country has 100 seats in the...Ch. 13.4 - Prob. 3CPCh. 13.4 - Prob. 1CVCCh. 13.4 - Prob. 2CVCCh. 13.4 - Prob. 3CVCCh. 13.4 - Prob. 4CVCCh. 13.4 - 1. The mathematics department has 30 teaching...Ch. 13.4 - 2. A school district has 57 new laptop computers...Ch. 13.4 - 3. The table shows the populations of three states...Ch. 13.4 - The table at the top of the next column shows the...Ch. 13.4 - A small country has 24 seats in the congress,...Ch. 13.4 - Prob. 6ECh. 13.4 - 7. A town has 40 mail trucks and four districts in...Ch. 13.4 - 8. A town has five districts in which mail is...Ch. 13.4 - A corporation has two branches A and B. Each year...Ch. 13.4 - 10. A corporation has three branches, A, B, and C...Ch. 13.4 - Prob. 11ECh. 13.4 - a. A country has three states, state A, with a...Ch. 13.4 - 13. In Exercise 12, use Jefferson’s method with ...Ch. 13.4 - Prob. 14ECh. 13.4 - Prob. 15ECh. 13.4 - What is the new-states paradox?Ch. 13.4 - 17. According to Balinski and Young’s...Ch. 13.4 - Make Sense? In Exercises 18-21, determine whether...Ch. 13.4 - Prob. 19ECh. 13.4 - Prob. 20ECh. 13.4 - Make Sense? In Exercises 18-21, determine whether...Ch. 13.4 - Give an example of a country with three states in...Ch. 13 - 1. The 12 preference ballots for four candidates...Ch. 13 - (In Exercises 2-5, be sure to refer to the...Ch. 13 - (In Exercises 2-5, be sure to refer to the...Ch. 13 - (In Exercises 2-5, be sure to refer to the...Ch. 13 - (In Exercises 2-5, be sure to refer to the...Ch. 13 - Prob. 6RECh. 13 - In Exercises 6-9, the Theater Society members are...Ch. 13 - In Exercises 6-9, the Theater Society members are...Ch. 13 - Prob. 9RECh. 13 - Prob. 10RECh. 13 - Prob. 11RECh. 13 - Prob. 12RECh. 13 - In Exercises 10-13, four candidates, A, B, C, and...Ch. 13 - In Exercises 14-16, voters in a small town are...Ch. 13 - In Exercises 14-16, voters in a small town are...Ch. 13 - Prob. 16RECh. 13 - Prob. 17RECh. 13 - Prob. 18RECh. 13 - Prob. 19RECh. 13 - Use the following preference table to solve...Ch. 13 - Prob. 21RECh. 13 - Prob. 22RECh. 13 - Prob. 23RECh. 13 - Prob. 24RECh. 13 - Use the following preference table, which shows...Ch. 13 - Prob. 26RECh. 13 - Prob. 27RECh. 13 - Prob. 28RECh. 13 - Prob. 29RECh. 13 - Prob. 30RECh. 13 - Prob. 31RECh. 13 - Prob. 32RECh. 13 - Prob. 33RECh. 13 - Prob. 34RECh. 13 - Prob. 35RECh. 13 - Prob. 36RECh. 13 - Prob. 37RECh. 13 - Prob. 38RECh. 13 - In Exercises 37-40, a country is composed of four...Ch. 13 - Prob. 40RECh. 13 - Prob. 41RECh. 13 - A country has 100 seats in the congress, divided...Ch. 13 - Prob. 43RECh. 13 - Is the following statement true or false? There...Ch. 13 - Prob. 1TCh. 13 - In Exercises 1-8, three candidates, A, B, and C,...Ch. 13 - Prob. 3TCh. 13 - Prob. 4TCh. 13 - Prob. 5TCh. 13 - Prob. 6TCh. 13 - Prob. 7TCh. 13 - Prob. 8TCh. 13 - Prob. 9TCh. 13 - Prob. 10TCh. 13 - Prob. 11TCh. 13 - Prob. 12TCh. 13 - Prob. 13TCh. 13 - Prob. 14TCh. 13 - Prob. 15TCh. 13 - Prob. 16TCh. 13 - In Exercises 16-24, an HMO has 10 doctors to be...Ch. 13 - Prob. 18TCh. 13 - Prob. 19TCh. 13 - Prob. 20TCh. 13 - Prob. 21TCh. 13 - Prob. 22TCh. 13 - Prob. 23TCh. 13 - Prob. 24TCh. 13 - Prob. 25T
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Consider a single-server queueing system that can hold a maximum of two customers excluding those being served. The server serves customers only in batches of two, and the service time (for a batch) has an exponential distribution with a mean of 1 unit of time. Thus if the server is idle and there is only one customer in the system, then the server must wait for another arrival before beginning service. The customers arrive according to a Poisson process at a mean rate of 1 per unit of time. (1). Draw the rate diagram. (Hint: think about how the state will change after one service completion.) (2). Set up the rate balance equations. (Hint: use the rate balance equations 1.) (3). Compute pn and L. (4). Compute the actual mean arrival rate Ā.arrow_forwardSuppose a sample of O-rings was obtained and the wall thickness (in inches) of each was recorded. Use a normal probability plot to assess whether the sample data could have come from a population that is normally distributed. Click here to view the table of critical values for normal probability plots. Click here to view page 1 of the standard normal distribution table. Click here to view page 2 of the standard normal distribution table. 0.191 0.186 0.201 0.2005 0.203 0.210 0.234 0.248 0.260 0.273 0.281 0.290 0.305 0.310 0.308 0.311 Using the correlation coefficient of the normal probability plot, is it reasonable to conclude that the population is normally distributed? Select the correct choice below and fill in the answer boxes within your choice. (Round to three decimal places as needed.) ○ A. Yes. The correlation between the expected z-scores and the observed data, , exceeds the critical value, . Therefore, it is reasonable to conclude that the data come from a normal population. ○…arrow_forwardHale / test the Series 1.12 7√2 2n by ratio best 2-12- nz by vico tio test en - プ n2 rook 31() by mood fest 4- E (^)" by root test Inn 5-E 3' b. E n n³ 2n by ratio test ٤ by Comera beon Test (n+2)!arrow_forward
- ding question ypothesis at a=0.01 and at a = 37. Consider the following hypotheses: 20 Ho: μ=12 HA: μ12 Find the p-value for this hypothesis test based on the following sample information. a. x=11; s= 3.2; n = 36 b. x = 13; s=3.2; n = 36 C. c. d. x = 11; s= 2.8; n=36 x = 11; s= 2.8; n = 49arrow_forward13. A pharmaceutical company has developed a new drug for depression. There is a concern, however, that the drug also raises the blood pressure of its users. A researcher wants to conduct a test to validate this claim. Would the manager of the pharmaceutical company be more concerned about a Type I error or a Type II error? Explain.arrow_forwardFind the z score that corresponds to the given area 30% below z.arrow_forward
- Find the following probability P(z<-.24)arrow_forwardExercises Evaluate the following limits. 1. lim cot x/ln x +01x 2. lim x² In x +014 3. lim x* x0+ 4. lim (cos√√x)1/x +014 5. lim x2/(1-cos x) x10 6. lim e*/* 818 7. lim (secx - tan x) x-x/2- 8. lim [1+(3/x)]* x→∞0arrow_forwardIn Exercises 1 through 3, let xo = O and calculate P7(x) and R7(x). 1. f(x)=sin x, x in R. 2. f(x) = cos x, x in R. 3. f(x) = In(1+x), x≥0. 4. In Exercises 1, 2, and 3, for |x| 1, calculate a value of n such that P(x) approximates f(x) to within 10-6. 5. Let (an)neN be a sequence of positive real numbers such that L = lim (an+1/an) exists in R. If L < 1, show that an → 0. [Hint: Let 1111 Larrow_forwardiation 7. Let f be continuous on [a, b] and differentiable on (a, b). If lim f'(x) xia exists in R, show that f is differentiable at a and f'(a) = lim f'(x). A similar result holds for b. x-a 8. In reference to Corollary 5.4, give an example of a uniformly continuous function on [0, 1] that is differentiable on (0, 1] but whose derivative is not bounded there. 9. Recall that a fixed point of a function f is a point c such that f(c) = c. (a) Show that if f is differentiable on R and f'(x)| x if x 1 and hence In(1+x) 0. 12. For 0 л/2. (Thus, as x л/2 from the left, cos x is never large enough for x+cosx to be greater than л/2 and cot x is never small enough for x + cot x to be less than x/2.)arrow_forwardConstruct a histogram for the spot weld shear strength datain Exercise 6.2.9. Comment on the shape of the histogram. Doesit convey the same information as the stem-and-leaf display? Reference: Exercise 6.2.9 is found in the image attached belowarrow_forward1. Show that f(x) = x3 is not uniformly continuous on R. 2. Show that f(x) = 1/(x-2) is not uniformly continuous on (2,00). 3. Show that f(x)=sin(1/x) is not uniformly continuous on (0,л/2]. 4. Show that f(x) = mx + b is uniformly continuous on R. 5. Show that f(x) = 1/x2 is uniformly continuous on [1, 00), but not on (0, 1]. 6. Show that if f is uniformly continuous on [a, b] and uniformly continuous on D (where D is either [b, c] or [b, 00)), then f is uniformly continuous on [a, b]U D. 7. Show that f(x)=√x is uniformly continuous on [1, 00). Use Exercise 6 to conclude that f is uniformly continuous on [0, ∞). 8. Show that if D is bounded and f is uniformly continuous on D, then fis bounded on D. 9. Let f and g be uniformly continuous on D. Show that f+g is uniformly continuous on D. Show, by example, that fg need not be uniformly con- tinuous on D. 10. Complete the proof of Theorem 4.7. 11. Give an example of a continuous function on Q that cannot be continuously extended to R. 12.…arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education

Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education

Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON


Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON

Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,

Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
What is a Relation? | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=hV1_wvsdJCE;License: Standard YouTube License, CC-BY
RELATIONS-DOMAIN, RANGE AND CO-DOMAIN (RELATIONS AND FUNCTIONS CBSE/ ISC MATHS); Author: Neha Agrawal Mathematically Inclined;https://www.youtube.com/watch?v=u4IQh46VoU4;License: Standard YouTube License, CC-BY