
A 10-lb collar is attached to a spring and slides without friction along a fixed rod in a vertical plane. The spring has an undeformed length of 14 in. and a constant k = 4 lb/in. Knowing that the collar is released from rest in the position shown, determine the force exerted by the rod on the collar at (a) point A, (b) point B. Both these points are on the curved portion of the rod.
Fig. P13.73
(a)

Find the force exerted by the rod on the collar at A
Answer to Problem 13.73P
The force exerted by the rod on the collar at A
Explanation of Solution
Given information:
The weight of the collar (W) is
The un-deformed length
The spring constant (k) is
The length of top support to point A
The length of point A to point B
The horizontal distance from weight to point A
The horizontal distance from point A to point B
The acceleration due to gravity (g) is
Calculation:
Calculate the mass of the collar (m) using the relation:
Substitute
Consider the position 1.
Calculate the length from weight to point B
Substitute
Calculate the stretch in rod
Substitute
Here, the kinetic energy at position 1
Calculate the potential energy in the position 1 due to elongation of the rod
Substitute
Here, the potential energy in the position 1 due to gravitation of the rod
Calculate the total potential energy
Substitute
Consider the position A.
Calculate the length at point A
Substitute
Calculate the stretch in rod
Substitute
Calculate the kinetic energy at position A
Here,
Substitute
Calculate the potential energy in the position A due to elongation of the rod
Substitute
Here, the potential energy in the position 1 due to gravitation of the rod
Calculate the total potential energy
Substitute
The expression for principle for conservation of energy as follows;
Substitute 0 for
Show the free body diagram of the point A with the forces acting as in Figure (1).
Calculate the normal acceleration at position A
Substitute
Calculate the spring force at position A
Substitute
Calculate the angle
Substitute
Calculate the force exerted by the rod on the collar in the point A
Substitute
Therefore, the force exerted by the rod on the collar at A
(b)

Find the force exerted by the rod on the collar at B
Answer to Problem 13.73P
The force exerted by the rod on the collar at B
Explanation of Solution
Given information:
The weight of the collar (W) is
The un-deformed length
The spring constant (k) is
The length of top support to point A
The length of point A to point B
The horizontal distance from weight to point A
The horizontal distance from point A to point B
The acceleration due to gravity (g) is
Calculation:
Consider the position B.
Calculate the length at point B
Substitute
Calculate the stretch in rod
Substitute
Calculate the kinetic energy at position B
Here,
Substitute
Calculate the potential energy in the position B due to elongation of the rod
Substitute
Calculate the potential energy in the position B due to gravitation of the rod
Substitute
Calculate the total potential energy
Substitute
The expression for principle for conservation of energy as follows;
Substitute 0 for
Show the free body diagram of the point B with the forces acting as in Figure (2).
Calculate the normal acceleration at position b
Substitute
Calculate the spring force at position B
Substitute
Calculate the force exerted by the rod on the collar in the point B
Substitute
Therefore, the force exerted by the rod on the collar at B
Want to see more full solutions like this?
Chapter 13 Solutions
Loose Leaf for Vector Mechanics for Engineers: Statics and Dynamics
- PROBLEM 3.46 The solid cylindrical rod BC of length L = 600 mm is attached to the rigid lever AB of length a = 380 mm and to the support at C. When a 500 N force P is applied at A, design specifications require that the displacement of A not exceed 25 mm when a 500 N force P is applied at A For the material indicated determine the required diameter of the rod. Aluminium: Tall = 65 MPa, G = 27 GPa. Aarrow_forwardFind the equivalent mass of the rocker arm assembly with respect to the x coordinate. k₁ mi m2 k₁arrow_forward2. Figure below shows a U-tube manometer open at both ends and containing a column of liquid mercury of length l and specific weight y. Considering a small displacement x of the manometer meniscus from its equilibrium position (or datum), determine the equivalent spring constant associated with the restoring force. Datum Area, Aarrow_forward
- 1. The consequences of a head-on collision of two automobiles can be studied by considering the impact of the automobile on a barrier, as shown in figure below. Construct a mathematical model (i.e., draw the diagram) by considering the masses of the automobile body, engine, transmission, and suspension and the elasticity of the bumpers, radiator, sheet metal body, driveline, and engine mounts.arrow_forward3.) 15.40 – Collar B moves up at constant velocity vB = 1.5 m/s. Rod AB has length = 1.2 m. The incline is at angle = 25°. Compute an expression for the angular velocity of rod AB, ė and the velocity of end A of the rod (✓✓) as a function of v₂,1,0,0. Then compute numerical answers for ȧ & y_ with 0 = 50°.arrow_forward2.) 15.12 The assembly shown consists of the straight rod ABC which passes through and is welded to the grectangular plate DEFH. The assembly rotates about the axis AC with a constant angular velocity of 9 rad/s. Knowing that the motion when viewed from C is counterclockwise, determine the velocity and acceleration of corner F.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





