
Concept explainers
Find the resulting values of angle

Answer to Problem 13.111P
The resulting values of angle
Explanation of Solution
Given information:
The altitude of the space vehicle in a circular orbit
The altitude of the surface of the earth from the center of the earth
The radius of the earth (R) is
The velocity at B forms an angle
The acceleration due to gravity (g) is
Assume the energy is used with only 50 percent of the energy expenditure used in Problem 110.
Calculation:
Convert the radius of the earth (R) from kilometer to meter:
Here,
Substitute
The expression for the geocentric force acting on the spacecraft when it is on the surface of earth
Here, G is the universal gravitational constant, M is the mass of the earth and m is the mass of the space vehicle.
The expression for the force acting on the spacecraft on the surface of the earth due to gravity
Substitute
Substitute
Calculate the altitude of the point A from the center of the earth
Substitute
Calculate the altitude of the point B from the center of the earth
Substitute
The expression for the normal acceleration
The expression for the geocentric force acting on the space vehicle when it is on the surface of earth (F) as follows:
Here, G is the universal gravitational constant, M is the mass of the earth and m is the mass of the space vehicle.
Calculate the velocity in circular orbit
Substitute
Substitute
The expression for the kinetic energy at point A
Here, m is the mass of the satellite.
Calculate the gravitational potential energy at point A
Substitute
The expression for the kinetic energy of the satellite at point B
Calculate the gravitational potential energy at point B
Substitute
The expression for the principle of conservation of energy at the point A to point B as follows:
Substitute
Substitute
Substitute
Calculate the energy expenditure
Substitute
Calculate the energy used
Substitute
Consider the additional kinetic energy at the point A:
Substitute
The expression for the kinetic energy at point A
The expression for the principle of conservation of energy at the point A to point B as follows:
Substitute
Substitute
The expression or the principle of conservation of angular momentum at point A to the point B as follows:
Substitute
Therefore, the resulting values of angle
Want to see more full solutions like this?
Chapter 13 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
- from this problem a want you to help to draw the shear moment and the bending momentarrow_forwardreaction at a is 1.6 wL (pos) handwritten solutions only please. correct answers upvotedarrow_forward1 8 4 Add numbers so that the sum of any row or column equals .30 Use only these numbers: .1.2.3.4.5.6.10.11.12.12.13.14.14arrow_forward
- Uppgift 2 (9p) I77777 20 kN 10 kN/m 4 [m] 2 2 Bestäm tvärkrafts- och momentdiagram för balken i figuren ovan. Extrempunkter ska anges med både läge och värde i diagrammen.arrow_forward**Problem 8-45.** The man has a mass of 60 kg and the crate has a mass of 100 kg. If the coefficient of static friction between his shoes and the ground is \( \mu_s = 0.4 \) and between the crate and the ground is \( \mu_c = 0.3 \), determine if the man is able to move the crate using the rope-and-pulley system shown. **Diagram Explanation:** The diagram illustrates a scenario where a man is attempting to pull a crate using a rope-and-pulley system. The setup is as follows: - **Crate (C):** Positioned on the ground with a rope attached. - **Rope:** Connects the crate to a pulley system and extends to the man. - **Pulley on Tree:** The rope runs over a pulley mounted on a tree which redirects the rope. - **Angles:** - The rope between the crate and tree forms a \(30^\circ\) angle with the horizontal. - The rope between the tree and the man makes a \(45^\circ\) angle with the horizontal. - **Man (A):** Pulling on the rope with the intention of moving the crate. This arrangement tests the…arrow_forwardplease solve this problems follow what the question are asking to do please show me step by steparrow_forward
- please help me to solve this problem and determine the stress for each point i like to be explained step by step with the correct answerarrow_forwardplease solve this problem for me the best way that you can explained to solve please show me the step how to solvearrow_forwardplese solbe this problem and give the correct answer solve step by step find the forces and line actionarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





