SOBECKI ALEKS ACCESS 360 OLA MATH OUR WR
4th Edition
ISBN: 9781260389739
Author: sobecki
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 13.1, Problem 25E
To determine
To find: The chromatic number of the graph and provide a coloring that uses that chromatic number.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Find the maximum and minimum values of the function f(x, y) = e² subject to ï³ + y³ = 128
Please show your answers to at least 4 decimal places. Enter DNE if the value does not exist.
Maximum value:
A chemical manufacturing plant can produce x units of chemical Z given p units of chemical P and 7 units
of chemical R, where:
z = 140p0.6,0.4
Chemical P costs $300 a unit and chemical R costs $1,500 a unit. The company wants to produce as many
units of chemical Z as possible with a total budget of $187,500.
A) How many units each chemical (P and R) should be "purchased" to maximize production of chemical Z
subject to the budgetary constraint?
Units of chemical P, p =
Units of chemical R, r =
B) What is the maximum number of units of chemical Z under the given budgetary conditions? (Round your
answer to the nearest whole unit.)
Max production, z=
units
A firm manufactures a commodity at two different factories, Factory X and Factory Y. The total cost (in
dollars) of manufacturing depends on the quantities, and y produced at each factory, respectively, and is
expressed by the joint cost function:
C(x, y) = x² + xy +4y²+400
A) If the company's objective is to produce 1,900 units per month while minimizing the total monthly cost
of production, how many units should be produced at each factory? (Round your answer to whole units, i.e.
no decimal places.)
To minimize costs, the company should produce:
units at Factory X and
units at Factory Y
B) For this combination of units, their minimal costs will be
enter any commas in your answer.)
Question Help: Video
dollars. (Do not
Chapter 13 Solutions
SOBECKI ALEKS ACCESS 360 OLA MATH OUR WR
Ch. 13.1 - Prob. 1TTOCh. 13.1 - The floor plan shown in Figure 14-7 is for a...Ch. 13.1 - Prob. 3TTOCh. 13.1 - Draw a graph for my neighborhood, shown in Figure...Ch. 13.1 - Prob. 5TTOCh. 13.1 - Prob. 6TTOCh. 13.1 - Prob. 7TTOCh. 13.1 - Prob. 8TTOCh. 13.1 - Prob. 1ECh. 13.1 - What is the difference between a loop and a...
Ch. 13.1 - What is the difference between a circuit and a...Ch. 13.1 - Draw two graphs that look physically different but...Ch. 13.1 - Prob. 5ECh. 13.1 - Prob. 8ECh. 13.1 - Prob. 9ECh. 13.1 - Prob. 10ECh. 13.1 - Prob. 11ECh. 13.1 - How does graph coloring apply to maps?Ch. 13.1 - Use the following graph to answer Exercises 1324....Ch. 13.1 - Use the following graph to answer Exercises 1324....Ch. 13.1 - Use the following graph to answer Exercises 1324....Ch. 13.1 - Use the following graph to answer Exercises 1324....Ch. 13.1 - Use the following graph to answer Exercises 1324....Ch. 13.1 - Prob. 18ECh. 13.1 - Use the following graph to answer Exercises 1324....Ch. 13.1 - Prob. 20ECh. 13.1 - Use the following graph to answer Exercises 1324....Ch. 13.1 - Use the following graph to answer Exercises 1324....Ch. 13.1 - Use the following graph to answer Exercises 1324....Ch. 13.1 - Use the following graph to answer Exercises 1324....Ch. 13.1 - Prob. 25ECh. 13.1 - Prob. 26ECh. 13.1 - Prob. 27ECh. 13.1 - Prob. 28ECh. 13.1 - Prob. 29ECh. 13.1 - Prob. 30ECh. 13.1 - For Exercises 3134, represent each figure using a...Ch. 13.1 - Prob. 32ECh. 13.1 - Prob. 33ECh. 13.1 - Prob. 34ECh. 13.1 - Prob. 35ECh. 13.1 - Prob. 36ECh. 13.1 - For Exercises 3538, draw a graph to represent each...Ch. 13.1 - Prob. 38ECh. 13.1 - Prob. 39ECh. 13.1 - For Exercises 3942, draw a graph that represents...Ch. 13.1 - Prob. 41ECh. 13.1 - Prob. 42ECh. 13.1 - In Exercises 4350, use graph coloring to find the...Ch. 13.1 - Prob. 44ECh. 13.1 - Prob. 45ECh. 13.1 - Prob. 46ECh. 13.1 - In Exercises 4350, use graph coloring to find the...Ch. 13.1 - Prob. 48ECh. 13.1 - Prob. 49ECh. 13.1 - Prob. 50ECh. 13.1 - Prob. 51ECh. 13.1 - Prob. 52ECh. 13.1 - Prob. 53ECh. 13.1 - Prob. 54ECh. 13.1 - Prob. 55ECh. 13.1 - Draw a graph that represents the street map in...Ch. 13.1 - Prob. 57ECh. 13.1 - Prob. 58ECh. 13.1 - Prob. 59ECh. 13.1 - Prob. 61ECh. 13.1 - Prob. 62ECh. 13.1 - Prob. 63ECh. 13.1 - (a)When a graph represents a map as in Exercise...Ch. 13.2 - Classify the paths shown in the graphs as Euler...Ch. 13.2 - Use Euler's theorem to determine if the graphs...Ch. 13.2 - Prob. 3TTOCh. 13.2 - Prob. 4TTOCh. 13.2 - Prob. 1ECh. 13.2 - Prob. 2ECh. 13.2 - Prob. 3ECh. 13.2 - Prob. 4ECh. 13.2 - Prob. 5ECh. 13.2 - Prob. 6ECh. 13.2 - Prob. 7ECh. 13.2 - Prob. 8ECh. 13.2 - For Exercises 710, decide whether each connected...Ch. 13.2 - Prob. 10ECh. 13.2 - For Exercises 710, decide whether each connected...Ch. 13.2 - Prob. 12ECh. 13.2 - For Exercises 1120, (a)State whether the graph has...Ch. 13.2 - Prob. 14ECh. 13.2 - For Exercises 1120, (a)State whether the graph has...Ch. 13.2 - Prob. 16ECh. 13.2 - For Exercises 1120, (a)State whether the graph has...Ch. 13.2 - Prob. 18ECh. 13.2 - For Exercises 1120, (a)State whether the graph has...Ch. 13.2 - Prob. 20ECh. 13.2 - For Exercises 1120, (a)State whether the graph has...Ch. 13.2 - For Exercises 1120, (a)State whether the graph has...Ch. 13.2 - Prob. 23ECh. 13.2 - Prob. 24ECh. 13.2 - Prob. 25ECh. 13.2 - Prob. 26ECh. 13.2 - Prob. 27ECh. 13.2 - For Exercises 2126, draw a graph for the figures...Ch. 13.2 - Prob. 29ECh. 13.2 - Prob. 30ECh. 13.2 - Prob. 31ECh. 13.2 - Prob. 32ECh. 13.2 - Prob. 33ECh. 13.2 - Prob. 34ECh. 13.2 - For Exercises 33 and 34, determine if an Euler...Ch. 13.2 - For Exercises 33 and 34, determine if an Euler...Ch. 13.2 - Prob. 37ECh. 13.2 - Prob. 39ECh. 13.2 - Prob. 40ECh. 13.2 - Draw some sample graphs and use them to discuss...Ch. 13.2 - Prob. 42ECh. 13.2 - Prob. 43ECh. 13.2 - Prob. 44ECh. 13.2 - Prob. 45ECh. 13.2 - Explain why the word connected is crucial...Ch. 13.2 - Prob. 47ECh. 13.2 - Prob. 48ECh. 13.3 - Prob. 1TTOCh. 13.3 - Prob. 2TTOCh. 13.3 - Prob. 3TTOCh. 13.3 - The driving times in minutes between four cities...Ch. 13.3 - Prob. 5TTOCh. 13.3 - Prob. 6TTOCh. 13.3 - Prob. 7TTOCh. 13.3 - What is the difference between a Hamilton path and...Ch. 13.3 - Prob. 2ECh. 13.3 - Give an example of a problem in our world that can...Ch. 13.3 - Prob. 4ECh. 13.3 - Prob. 5ECh. 13.3 - Prob. 6ECh. 13.3 - Describe what a typical traveling salesperson...Ch. 13.3 - Prob. 8ECh. 13.3 - Prob. 9ECh. 13.3 - Prob. 10ECh. 13.3 - Prob. 11ECh. 13.3 - Prob. 12ECh. 13.3 - For Exercises 1118, find two different Hamilton...Ch. 13.3 - Prob. 14ECh. 13.3 - Prob. 15ECh. 13.3 - Prob. 16ECh. 13.3 - For Exercises 1118, find two different Hamilton...Ch. 13.3 - Prob. 18ECh. 13.3 - Prob. 19ECh. 13.3 - Prob. 20ECh. 13.3 - For Exercises 1118, find two different Hamilton...Ch. 13.3 - Prob. 22ECh. 13.3 - Prob. 23ECh. 13.3 - Prob. 24ECh. 13.3 - For Exercises 1924, find two different Hamilton...Ch. 13.3 - Prob. 26ECh. 13.3 - Prob. 27ECh. 13.3 - Prob. 28ECh. 13.3 - For Exercises 2528, find the number of Hamilton...Ch. 13.3 - Prob. 30ECh. 13.3 - Prob. 31ECh. 13.3 - For Exercises 29 and 30, use the brute force...Ch. 13.3 - For Exercises 3134, use the nearest neighbor...Ch. 13.3 - Prob. 34ECh. 13.3 - Prob. 35ECh. 13.3 - Prob. 36ECh. 13.3 - Prob. 37ECh. 13.3 - Prob. 38ECh. 13.3 - Prob. 39ECh. 13.3 - Prob. 40ECh. 13.3 - Prob. 41ECh. 13.3 - For Exercises 3942, use the information in the...Ch. 13.3 - Prob. 43ECh. 13.3 - Prob. 44ECh. 13.3 - Prob. 45ECh. 13.3 - For Exercises 4346, use the information in the...Ch. 13.3 - For Exercises 4346, use the information in the...Ch. 13.3 - For Exercises 45–48, use the information in the...Ch. 13.3 - Prob. 49ECh. 13.3 - A pizza delivery person has five prearranged...Ch. 13.3 - Prob. 51ECh. 13.3 - Prob. 52ECh. 13.3 - Prob. 53ECh. 13.3 - Prob. 54ECh. 13.3 - When planning routes, distance isnt always the key...Ch. 13.3 - Prob. 56ECh. 13.3 - Repeat questions 51 through 54, choosing four...Ch. 13.3 - Prob. 58ECh. 13.3 - Prob. 59ECh. 13.3 - Prob. 60ECh. 13.3 - Find a road atlas that has a mileage chart. Pick...Ch. 13.3 - Prob. 62ECh. 13.3 - Prob. 63ECh. 13.3 - Prob. 64ECh. 13.3 - Prob. 65ECh. 13.3 - Prob. 66ECh. 13.3 - Prob. 67ECh. 13.3 - Prob. 68ECh. 13.3 - Prob. 69ECh. 13.3 - Prob. 70ECh. 13.3 - Prob. 71ECh. 13.3 - Prob. 72ECh. 13.3 - Prob. 73ECh. 13.3 - Prob. 74ECh. 13.4 - Prob. 1TTOCh. 13.4 - Prob. 2TTOCh. 13.4 - Prob. 3TTOCh. 13.4 - Prob. 4TTOCh. 13.4 - Prob. 5TTOCh. 13.4 - Prob. 1ECh. 13.4 - Prob. 2ECh. 13.4 - Prob. 3ECh. 13.4 - Prob. 4ECh. 13.4 - Prob. 5ECh. 13.4 - Prob. 6ECh. 13.4 - For Exercise 716, decide whether or not each graph...Ch. 13.4 - Prob. 8ECh. 13.4 - Prob. 9ECh. 13.4 - Prob. 10ECh. 13.4 - Prob. 11ECh. 13.4 - Prob. 12ECh. 13.4 - Prob. 13ECh. 13.4 - Prob. 14ECh. 13.4 - Prob. 15ECh. 13.4 - Prob. 16ECh. 13.4 - Prob. 17ECh. 13.4 - Prob. 18ECh. 13.4 - Prob. 19ECh. 13.4 - Prob. 20ECh. 13.4 - Prob. 21ECh. 13.4 - Prob. 22ECh. 13.4 - Prob. 23ECh. 13.4 - Prob. 24ECh. 13.4 - Prob. 25ECh. 13.4 - Prob. 26ECh. 13.4 - Prob. 27ECh. 13.4 - Prob. 28ECh. 13.4 - Prob. 29ECh. 13.4 - Prob. 30ECh. 13.4 - Prob. 31ECh. 13.4 - Prob. 32ECh. 13.4 - Prob. 33ECh. 13.4 - As a new suburban neighborhood is being built, the...Ch. 13.4 - Prob. 35ECh. 13.4 - Prob. 36ECh. 13.4 - Prob. 37ECh. 13.4 - Prob. 38ECh. 13.4 - Prob. 39ECh. 13.4 - In the last two sections, we used both Hamilton...Ch. 13.4 - Prob. 41ECh. 13.4 - Prob. 42ECh. 13.4 - Prob. 43ECh. 13.4 - Prob. 44ECh. 13 - Use the graph shown in Figure 14-62 for Exercise...Ch. 13 - Prob. 2RECh. 13 - Prob. 3RECh. 13 - Prob. 4RECh. 13 - Prob. 5RECh. 13 - Prob. 6RECh. 13 - Use the graph shown in Figure 14-62 for Exercises...Ch. 13 - Prob. 8RECh. 13 - Prob. 9RECh. 13 - Prob. 10RECh. 13 - Prob. 11RECh. 13 - Prob. 12RECh. 13 - Prob. 13RECh. 13 - Repeat Exercise 13 for the graphs from Exercises...Ch. 13 - Prob. 15RECh. 13 - Prob. 16RECh. 13 - Prob. 17RECh. 13 - Prob. 18RECh. 13 - Prob. 19RECh. 13 - Prob. 20RECh. 13 - Prob. 21RECh. 13 - Prob. 22RECh. 13 - Prob. 23RECh. 13 - Prob. 24RECh. 13 - Prob. 25RECh. 13 - Prob. 26RECh. 13 - Prob. 27RECh. 13 - Prob. 28RECh. 13 - Prob. 29RECh. 13 - Prob. 30RECh. 13 - Prob. 31RECh. 13 - Prob. 32RECh. 13 - Prob. 33RECh. 13 - Prob. 34RECh. 13 - For the following graph: (a)What is the degree of...Ch. 13 - Draw a graph with two bridges, and the...Ch. 13 - Prob. 3CTCh. 13 - Prob. 4CTCh. 13 - (a)For the graph shown in Figure 14-73, find an...Ch. 13 - Prob. 6CTCh. 13 - For the housing plan shown in Figure 14-75, draw a...Ch. 13 - Prob. 8CTCh. 13 - Use the brute force method to find the shortest...Ch. 13 - Use the nearest neighbor method and cheapest link...Ch. 13 - Prob. 11CTCh. 13 - Decide whether the problem can be solved using...
Knowledge Booster
Similar questions
- use Lagrange multipliers to solvearrow_forwardSuppose a Cobb-Douglas Production function is given by the following: P(L,K)=80L0.75 K-0.25 where L is units of labor, K is units of capital, and P(L, K) is total units that can be produced with this labor/capital combination. Suppose each unit of labor costs $400 and each unit of capital costs $1,600. Further suppose a total of $384,000 is available to be invested in labor and capital (combined). A) How many units of labor and capital should be "purchased" to maximize production subject to your budgetary constraint? Units of labor, L = Units of capital, K = B) What is the maximum number of units of production under the given budgetary conditions? (Round your answer to the nearest whole unit.) Max production = unitsarrow_forwardSuppose a Cobb-Douglas Production function is given by the function: P(L, K) = 7L0.0 K0.4 Furthemore, the cost function for a facility is given by the function: C(L, K) = 100L +400K Suppose the monthly production goal of this facility is to produce 15,000 items. In this problem, we will assume L represents units of labor invested and K represents units of capital invested, and that you can invest in tenths of units for each of these. What allocation of labor and capital will minimize total production Costs? Units of Labor L = Units of Capital K = (Show your answer is exactly 1 decimal place) (Show your answer is exactly 1 decimal place) Also, what is the minimal cost to produce 15,000 units? (Use your rounded values for L and K from above to answer this question.) The minimal cost to produce 15,000 units is $ Hint: 1. Your constraint equation involves the Cobb Douglas Production function, not the Cost function. 2. When finding a relationship between L and K in your system of equations,…arrow_forward
- 1. Give a subset that satisfies all the following properties simultaneously: Subspace Convex set Affine set Balanced set Symmetric set Hyperspace Hyperplane 2. Give a subset that satisfies some of the conditions mentioned in (1) but not all, with examples. 3. Provide a mathematical example (not just an explanation) of the union of two balanced sets that is not balanced. 4. What is the precise mathematical condition for the union of two hyperspaces to also be a hyperspace? Provide a proof. edited 9:11arrow_forwardFind the absolute maximum and minimum of f(x, y) = x + y within the domain x² + y² ≤ 4. Please show your answers to at least 4 decimal places. Enter DNE if the value does not exist. 1. Absolute minimum of f(x, y) isarrow_forwardSuppose that one factory inputs its goods from two different plants, A and B, with different costs, 3 and 7 each respective. And suppose the price function in the market is decided as p(x, y) = 100 - x - y where I and y are the demand functions and 0 < x,y. Then as x = y = the factory can attain the maximum profit,arrow_forward
- 0|0|0|0 - Consider the time series X₁ and Y₁ = (I – B)² (I – B³)Xt. What transformations were performed on Xt to obtain Yt? seasonal difference of order 2 simple difference of order 5 seasonal difference of order 1 seasonal difference of order 5 simple difference of order 2arrow_forwardEvaluate the following integrals, showing all your workingarrow_forwardConsider the function f(x) = 2x³-4x2-x+1. (a) Without doing a sketch, show that the cubic equation has at least one solution on the interval [0,1]. Use a theorem discussed in lectures, or see Section 1.8 of Calculus (7th ed) by Stewart. Ensure that the conditions of the theorem are satisfied (include this in your solution) (b) Now, by sketching the cubic (by hand or by computer), you should see that there is, in fact, exactly one zero in the interval [0,1]. Use Newton's method to find this zero accurate to 3 decimal places. You should include a sketch of the cubic, Newton's iteration formula, and the list of iterates. [Use a computer if possible, e.g., a spreadsheet or MatLab.]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill

Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill