Using Figure 13.9, carefull sketch a free body diagram for the case of a simple pendulum hanging at latitude lambda, labeling all forces acting on the point mass, m . Set up the equations of motion for equilibrium, setting one coordinate in the direction of the centripetal accleration (toward P in the diagram), the other perpendicular to that. Show that the deflection angle ε , defined as the angle between the pendulum string and the radial direction toward the center of Earth, is given by the expression below. What is the deflection angle at latitude 45 degrees? Assume that Earth is a perfect sphere. tan ( λ + ε ) = g g − ω 2 R E tan λ , where ω is the angular velocity of Earth.
Using Figure 13.9, carefull sketch a free body diagram for the case of a simple pendulum hanging at latitude lambda, labeling all forces acting on the point mass, m . Set up the equations of motion for equilibrium, setting one coordinate in the direction of the centripetal accleration (toward P in the diagram), the other perpendicular to that. Show that the deflection angle ε , defined as the angle between the pendulum string and the radial direction toward the center of Earth, is given by the expression below. What is the deflection angle at latitude 45 degrees? Assume that Earth is a perfect sphere. tan ( λ + ε ) = g g − ω 2 R E tan λ , where ω is the angular velocity of Earth.
Using Figure 13.9, carefull sketch a free body diagram for the case of a simple pendulum hanging at latitude lambda, labeling all forces acting on the point mass,m. Set up the equations of motion for equilibrium, setting one coordinate in the direction of the centripetal accleration (toward P in the diagram), the other perpendicular to that. Show that the deflection angle
ε
, defined as the angle between the pendulum string and the radial direction toward the center of Earth, is given by the expression below. What is the deflection angle at latitude 45 degrees? Assume that Earth is a perfect sphere.
tan
(
λ
+
ε
)
=
g
g
−
ω
2
R
E
tan
λ
, where
ω
is the angular velocity of Earth.
Definition Definition Force on a body along the radial direction. Centripetal force is responsible for the circular motion of a body. The magnitude of centripetal force is given by F C = m v 2 r m = mass of the body in the circular motion v = tangential velocity of the body r = radius of the circular path
Uniform Circular motion.
1. Mini Lecture
2. Let the position of a particle be given by:
(t) = Rcos (wt)i + Rsin (wt)j
3. Calculate the expression for the velocity
vector and show that the velocity vector is
tangential to the circumference of the circle.
4. Calculate the expression for the acceleration
vector and show that the acceleration vector
points radially inward.
5. Calculate the magnitude of the velocity and
magnitude of the acceleration, and therefore
show that
v2
a =
R
4. A ball is thrown vertically up, its speed.
slowing under the influence of gravity.
Suppose (A) we film this motion and play
the tape backward (so the tape begins with
the ball at its highest point and ends with it
reaching the point from which it was
released), and (B) we observe the motion of
the ball from a frame of reference moving
up at the initial speed of the ball. The ball
has a downward acceleration g in:
a. A and B
b. Only A
c. Only B
d. Neither A nor B
2. Consider a 2.4 m long propeller that
operated at a constant 350 rpm. Find the
acceleration of a particle at the tip of the
propeller.
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.