COLLEGE PHYSICS LL W/ 6 MONTH ACCESS
COLLEGE PHYSICS LL W/ 6 MONTH ACCESS
2nd Edition
ISBN: 9781319414597
Author: Freedman
Publisher: MAC HIGHER
bartleby

Concept explainers

Question
Book Icon
Chapter 13, Problem 83QAP
To determine

(a)

The factor by which a point source moves away from the screen in order to lower the intensity by factor of 10.

Expert Solution
Check Mark

Answer to Problem 83QAP

The factor by which a point source moves away from the screen in order to lower the intensity by factor of 10 is 3.16.

Explanation of Solution

Given:

The intensity of the new wave is,
  I2=I110

Formula used:

The intensity of the sound wave is given by,
  I=P4πr2

Where,
  I =Intensity
  P =Power
  r =Distance

Calculation:

From inverse square law of sound waves, we get
  I=P4πr2I11r12I21r22

   I 1 10I1=r12r22110=r12r22

  r22=10r12

  r2=r110r2=3.16r1

Conclusion:

By factor 3.16 the point source of sound wave moves away from the screen.

To determine

(b)

The factor by which a point source moves away from the screen in order to lower the intensity by factor of 3.

Expert Solution
Check Mark

Answer to Problem 83QAP

The factor by which a point source moves away from the screen in order to lower the intensity by factor of 3 is 1.73.

Explanation of Solution

Given:

The intensity of the new wave is,
  I2=I13

Formula used:

The intensity of the sound wave is given by,
  I=P4πr2

Where,
  I =Intensity
  P =Power
  r =Distance

Calculation:

From inverse square law of sound waves, we get
  I=P4πr2I11r12I21r22

   I 1 3I1=r12r2213=r12r22

  r22=3r12

  r2=r13r2=1.73r1

Conclusion:

By factor 1.73 the point source of sound wave moves away from the screen.

To determine

(c)

The factor by which a point source moves away from the screen in order to lower the intensity by factor of 2.

Expert Solution
Check Mark

Answer to Problem 83QAP

The factor by which a point source moves away from the screen in order to lower the intensity by factor of 2 is 1.41.

Explanation of Solution

Given:

The intensity of the new wave is,
  I2=I12

Formula used:

The intensity of the sound wave is given by,
  I=P4πr2

Where,
  I =Intensity
  P =Power
  r =Distance

Calculation:

From inverse square law of sound waves, we get
  I=P4πr2I11r12I21r22

   I 1 2I1=r12r2212=r12r22

  r22=2r12

  r2=r12r2=1.41r1

Conclusion:

By factor 1.41 the point source of sound wave moves away from the screen.

To determine

(d)

The changes observed when the point source is replaced with hemispherical instead of spherical.

Expert Solution
Check Mark

Explanation of Solution

Introduction:

The intensity of sound wave at a distance due to a spherical point source is given by inverse square law of sound.

  I=P4πr2

From inverse square law of sound waves, we get
  I=P4πr2

For hemisphere the surface area is given by,
Surfacearea=3πr2

Thus, intensity is given by
  I=P3πr2

When the shape of point source is changed from spherical to hemispherical the intensity of it is increased and becomes P3πr2.

Conclusion:

By changing the point source from spherical to hemispherical the intensity is I=P3πr2

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A ball is tied to one end of a string. The other end of the string is fixed. The ball is set in motion around a vertical circle without friction. At the top of the circle, the ball has a speed of ; = √√ Rg, as shown in the figure. At what angle should the string be cut so that the ball will travel through the center of the circle? The path after string is cut R
(a) A luggage carousel at an airport has the form of a section of a large cone, steadily rotating about its vertical axis. Its metallic surface slopes downward toward the outside, making an angle of 24.5° with the horizontal. A 30.0-kg piece of luggage is placed on the carousel, 7.46 m from the axis of rotation. The travel bag goes around once in 37.5 s. Calculate the magnitude of the force of static friction between the bag and the carousel. Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. N (b) The drive motor is shifted to turn the carousel at a higher constant rate of rotation, and the piece of luggage is bumped to a position 7.94 m from the axis of rotation. The bag is on the verge of slipping as it goes around once every 30.5 s. Calculate the coefficient of static friction between the bag and the carousel. Your response differs significantly from the correct answer. Rework your solution from the…
(a) Imagine that a space probe could be fired as a projectile from the Earth's surface with an initial speed of 5.78 x 104 m/s relative to the Sun. What would its speed be when it is very far from the Earth (in m/s)? Ignore atmospheric friction, the effects of other planets, and the rotation of the Earth. (Consider the mass of the Sun in your calculations.) Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. m/s (b) What If? The speed provided in part (a) is very difficult to achieve technologically. Often, Jupiter is used as a "gravitational slingshot" to increase the speed of a probe to the escape speed from the solar system, which is 1.85 x 104 m/s from a point on Jupiter's orbit around the Sun (if Jupiter is not nearby). If the probe is launched from the Earth's surface at a speed of 4.10 x 10 m/s relative…

Chapter 13 Solutions

COLLEGE PHYSICS LL W/ 6 MONTH ACCESS

Ch. 13 - Prob. 11QAPCh. 13 - Prob. 12QAPCh. 13 - Prob. 13QAPCh. 13 - Prob. 14QAPCh. 13 - Prob. 15QAPCh. 13 - Prob. 16QAPCh. 13 - Prob. 17QAPCh. 13 - Prob. 18QAPCh. 13 - Prob. 19QAPCh. 13 - Prob. 20QAPCh. 13 - Prob. 21QAPCh. 13 - Prob. 22QAPCh. 13 - Prob. 23QAPCh. 13 - Prob. 24QAPCh. 13 - Prob. 25QAPCh. 13 - Prob. 26QAPCh. 13 - Prob. 27QAPCh. 13 - Prob. 28QAPCh. 13 - Prob. 29QAPCh. 13 - Prob. 30QAPCh. 13 - Prob. 31QAPCh. 13 - Prob. 32QAPCh. 13 - Prob. 33QAPCh. 13 - Prob. 34QAPCh. 13 - Prob. 35QAPCh. 13 - Prob. 36QAPCh. 13 - Prob. 37QAPCh. 13 - Prob. 38QAPCh. 13 - Prob. 39QAPCh. 13 - Prob. 40QAPCh. 13 - Prob. 41QAPCh. 13 - Prob. 42QAPCh. 13 - Prob. 43QAPCh. 13 - Prob. 44QAPCh. 13 - Prob. 45QAPCh. 13 - Prob. 46QAPCh. 13 - Prob. 47QAPCh. 13 - Prob. 48QAPCh. 13 - Prob. 49QAPCh. 13 - Prob. 50QAPCh. 13 - Prob. 51QAPCh. 13 - Prob. 52QAPCh. 13 - Prob. 53QAPCh. 13 - Prob. 54QAPCh. 13 - Prob. 55QAPCh. 13 - Prob. 56QAPCh. 13 - Prob. 57QAPCh. 13 - Prob. 58QAPCh. 13 - Prob. 59QAPCh. 13 - Prob. 60QAPCh. 13 - Prob. 61QAPCh. 13 - Prob. 62QAPCh. 13 - Prob. 63QAPCh. 13 - Prob. 64QAPCh. 13 - Prob. 65QAPCh. 13 - Prob. 66QAPCh. 13 - Prob. 67QAPCh. 13 - Prob. 68QAPCh. 13 - Prob. 69QAPCh. 13 - Prob. 70QAPCh. 13 - Prob. 71QAPCh. 13 - Prob. 72QAPCh. 13 - Prob. 73QAPCh. 13 - Prob. 74QAPCh. 13 - Prob. 75QAPCh. 13 - Prob. 76QAPCh. 13 - Prob. 77QAPCh. 13 - Prob. 78QAPCh. 13 - Prob. 79QAPCh. 13 - Prob. 80QAPCh. 13 - Prob. 81QAPCh. 13 - Prob. 82QAPCh. 13 - Prob. 83QAPCh. 13 - Prob. 84QAPCh. 13 - Prob. 85QAPCh. 13 - Prob. 86QAPCh. 13 - Prob. 87QAPCh. 13 - Prob. 88QAPCh. 13 - Prob. 89QAPCh. 13 - Prob. 90QAPCh. 13 - Prob. 91QAPCh. 13 - Prob. 92QAPCh. 13 - Prob. 93QAPCh. 13 - Prob. 94QAPCh. 13 - Prob. 95QAPCh. 13 - Prob. 96QAPCh. 13 - Prob. 97QAPCh. 13 - Prob. 98QAPCh. 13 - Prob. 99QAPCh. 13 - Prob. 100QAPCh. 13 - Prob. 101QAPCh. 13 - Prob. 102QAPCh. 13 - Prob. 103QAPCh. 13 - Prob. 104QAPCh. 13 - Prob. 105QAPCh. 13 - Prob. 106QAPCh. 13 - Prob. 107QAPCh. 13 - Prob. 108QAPCh. 13 - Prob. 109QAPCh. 13 - Prob. 110QAPCh. 13 - Prob. 111QAPCh. 13 - Prob. 112QAPCh. 13 - Prob. 113QAP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Inquiry into Physics
Physics
ISBN:9781337515863
Author:Ostdiek
Publisher:Cengage
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning