
(a)
Average unit cost for operating a standard vehicle on a level roadway.

Answer to Problem 7P
Explanation of Solution
Calculation:
The average unit cost for operating a standard vehicle on a level roadway is as follows:
Let the depreciation cost per mile as
Let the registration and insurance cost per mile as
Let the maintenance cost per mile as
Let the fuel cost per mile as
The total cost required per mile by adding all the costs.
Total cost required per mile
Total cost required per mile
Conclusion:
Therefore, the average cost required for operating a standard vehicle on a level roadway is
(b)
Average unit cost for travel time for a truck.

Answer to Problem 7P
Explanation of Solution
Calculation:
The average unit cost for travel time for a truck.
Let the cost required per mile to operate the truck as
For the total unit costs using the relation
Substituting the values, we get
Substitute the value of
Let the average speed be
Substitute
Conclusion:
Therefore, the estimate average unit cost for travel time for a truck is
(c)
Average unit cost for single-vehicle property damage.

Answer to Problem 7P
Explanation of Solution
Calculation:
The average unit cost for single-vehicle property damage.
Substituting the values, we have
Conclusion:
Therefore, the average unit cost forsingle-vehicle property damage is
(d)
Average unit cost for personal injury.

Answer to Problem 7P
Explanation of Solution
Calculation:
The average unit cost for personal injury.
Let the cost for X-ray be equal to
Let the cost for emergency to be equal to
Conclusion:
Therefore, the average unit cost for personal injury is
(e)
The average unit cost for fatality.

Answer to Problem 7P
Explanation of Solution
Calculation:
The average unit cost for fatality.
It varies from $100,000 to $4.5 million.
Want to see more full solutions like this?
Chapter 13 Solutions
Traffic and Highway Engineering - With Mindtap
- Show step by step solutionarrow_forwardDraw the shear and the moment diagrams for each of the frames below. If the frame is statically indeterminate the reactions have been provided. Problem 1 (Assume pin connections at A, B and C). 30 kN 2 m 5 m 30 kN/m B 60 kN 2 m 2 m A 22 CO Carrow_forwardThis is an old exam practice question. The answer key says the answer is Pmax = 52.8kN but I am confused how they got that.arrow_forward
- F12-45. Car A is traveling with a constant speed of 80 km/h due north, while car B is traveling with a constant speed of 100 km/h due east. Determine the velocity of car B relative to car A. pload Choose a File Question 5 VA - WB VBA V100 111413 + *12-164. The car travels along the circular curve of radius r = 100 ft with a constant speed of v = 30 ft/s. Determine the angular rate of rotation è of the radial liner and the magnitude of the car's acceleration. Probs. 12-163/164 pload Choose a File r = 400 ft 20 ptsarrow_forwardPlease show step by step how to solve this and show formulararrow_forwardPlease solve this question step by step with dia gramarrow_forward
- Use the second picture to answer the question, Thank you so much for your help!arrow_forwardP6.16 A compound shaft (Figure P6.16) consists of a titanium alloy [G= 6,200 ksi] tube (1) and a solid stainless steel [G= 11,500 ksi] shaft (2). Tube (1) has a length L₁ = 40 in., an outside diameter D₁ = 1.75 in., and a wall thickness t₁ = 0.125 in. Shaft (2) has a length 42 = 50 in. and a diameter d₂ = 1.25 in. If an external torque TB = 580 lb ft acts at pulley B in the direction shown, calculate the torque Tcrequired at pulley C so that the rotation angle of pulley Crelative to A is zero. B Te (2) TB (1) FIGURE P6.16arrow_forward7.43 Neglecting head losses, determine what horsepower the pump must deliver to produce the flow as shown. Here, the elevations at points A, B, C, and D are 124 ft, 161 ft, 110 ft, and 90 ft, respectively. The nozzle area is 0.10 ft². B Nozzle Water C Problem 7.43arrow_forward
- A 1.8m x 1.8m footing is located at a depth of 1 m below the ground surface in a deep deposit of compacted sand (f'= 33 , f' = 28 , γ = 17.5 kN/m). Calculate the ultimate net bearing capacity considering several factors (e.g., shape, depth, and inclination) when the groundwater table is located (a) at 5 m below the footing base, (b) at the ground surface, (c) at the footing base, and (d) at 1.5 m below the footing base. Also, explain the effects of the groundwater levels in the bearing capacities of the footing with your own words. If the information is not given for the calculation, please assume it reasonably.arrow_forward7.18 Determine the discharge in the pipe and the pressure at point B. Neglect head losses. Assume α = 1.0 at all locations. 1.5 m Water B 3.5 m 40 cm diameter -20 cm diameter nozzle Problem 7.18arrow_forwardA 200-lb block is at rest on a 30° inclined plane. The coefficient of friction between the block and the inclined plane is 0.20. Compute the value of a horizontal force P that will cause motion to impend the block up the inclined plane. 200 lb P 30°arrow_forward
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage LearningSolid Waste EngineeringCivil EngineeringISBN:9781305635203Author:Worrell, William A.Publisher:Cengage Learning,

