
(a)
Average unit cost for operating a standard vehicle on a level roadway.

Answer to Problem 7P
Explanation of Solution
Calculation:
The average unit cost for operating a standard vehicle on a level roadway is as follows:
Let the depreciation cost per mile as
Let the registration and insurance cost per mile as
Let the maintenance cost per mile as
Let the fuel cost per mile as
The total cost required per mile by adding all the costs.
Total cost required per mile
Total cost required per mile
Conclusion:
Therefore, the average cost required for operating a standard vehicle on a level roadway is
(b)
Average unit cost for travel time for a truck.

Answer to Problem 7P
Explanation of Solution
Calculation:
The average unit cost for travel time for a truck.
Let the cost required per mile to operate the truck as
For the total unit costs using the relation
Substituting the values, we get
Substitute the value of
Let the average speed be
Substitute
Conclusion:
Therefore, the estimate average unit cost for travel time for a truck is
(c)
Average unit cost for single-vehicle property damage.

Answer to Problem 7P
Explanation of Solution
Calculation:
The average unit cost for single-vehicle property damage.
Substituting the values, we have
Conclusion:
Therefore, the average unit cost forsingle-vehicle property damage is
(d)
Average unit cost for personal injury.

Answer to Problem 7P
Explanation of Solution
Calculation:
The average unit cost for personal injury.
Let the cost for X-ray be equal to
Let the cost for emergency to be equal to
Conclusion:
Therefore, the average unit cost for personal injury is
(e)
The average unit cost for fatality.

Answer to Problem 7P
Explanation of Solution
Calculation:
The average unit cost for fatality.
It varies from $100,000 to $4.5 million.
Want to see more full solutions like this?
Chapter 13 Solutions
Traffic and Highway Engineering
- A composite beam is made of two brass [E=114 GPa] bars bonded to two aluminum [E = 74 GPa] bars, as shown. The beam is subjected to a bending moment of 335 N-m acting about the z axis. Using a = 5 mm, b = 30 mm, c = 10 mm, and d = 20 mm, calculate (a) the maximum bending stress in the aluminum bars. (b) the maximum bending stress in the brass bars. N Aluminum C Brass Brass Aluminum b Answers: (a) σal= (b) Obr= a a MPa MPaarrow_forwardA standard steel pipe (D = 3.500 in.; d = 3.068 in.) supports a concentrated load of P = 630 lb as shown. The span length of the cantilever beam is L = 4 ft. Determine the magnitude of the maximum horizontal shear stress in the pipe. 720 psi 761 psi 508 psi 564 psi 667 psi L Pipe cross section.arrow_forwardA beam is subjected to equal bending moments of M₂ = 59 kip-ft. The cross-sectional dimensions are b₁ = 7.5 in., d₁ = 1.4 in., b₂ = 0.55 in., d₂ = 5.0 in., b3 = 3.2 in., and d3 = 1.5 in. Determine: (a) the centroid location (measured with respect to the bottom of the cross-section), the moment of inertia about the z axis, and the controlling section modulus about the z axis. (b) the bending stress at point H. Tensile stress is positive, while compressive stress is negative. (c) the bending stress at point K. Tensile stress is positive, while compressive stress is negative. (d) the maximum bending stress produced in the cross section. Tensile stress is positive, while compressive stress is negative. M₂ Z M₂ Answer: (a) y= i Iz= in. in.4 S= i on,3 (b) σH= i ksi (c) OK = i ksi (d) σmax= ksi K b₁ d₁ H b₂ b3 d₂ d3arrow_forward
- A cantilever timber beam with a span of L = 2.9 m supports a uniformly distributed load w. The beam width is b = 300 mm and the beam height is h = 160 mm. The allowable bending stress of the wood is 7 MPa. Determine the magnitude of the maximum load w that may be carried by the beam. Answer: w= I i kN/m.arrow_forwardAW18 × 40 standard steel shape is used to support the loads shown on the beam. Assume P = 24 kips, w = 4.4 kips/ft, LAB = 4.6 ft, LBC = 4.6 ft, and LCD = 15.0 ft. Determine the magnitude of the maximum bending stress in the beam. B C Answer: LAB ✓ LBC Omax i ksi W LCD xarrow_forwardA simply supported timber beam carries a uniformly distributed load of w = 3 kN/m. Determine the magnitude of the largest horizontal shear stress at point H, which is 60 mm above the centroid, anywhere along the length of the beam. 293 kPa 234 kPa 252 kPa 321 kPa ○ 163 kPa พ 4 m 300 mm B 1 m 100 mm K 60 mm * 75 mmarrow_forward
- The "New Jersey" barrier is commonly used during highway construction. Determine its weight per foot of length if it is made from plain stone concrete. 4 in. 75°- 12 in. 55° 6 in. -24 inarrow_forwardThe "New Jersey" barrier is commonly used during highway construction. Determine its weight per foot of length if it is made from plain stone concrete. 4 in. 75°- 55° 12 in. 6 in. 24 inarrow_forwardThe prestressed concrete girder is made from plain stone concrete and four -in. cold form steel reinforcing rods. Determine the dead weight of the girder per foot of its length. 8 in. 6 in. 20 in. 6 in. 8 in. 4 in. 6 in. 4 in.arrow_forward
- The floor of a building, shown in Fig. (a), is subjected to a uniformly distributed load of 3.5 kPa over its surface area. Determine the loads acting on all the members of the floor system. AI Column Floor beam B Slab C D 3 at 4 m = 12 m Floor beam E F Girder GT -9 m. (a) Framing Planarrow_forwardCommercial trucks begin to arrive at a seaport entry plaza at 7:50 A.M., at the rate of λ(t) = 6.3 – 0.25t[λ(t) is in veh/min and t is in minutes]. The plaza opens at 8:00 A.M. For the first 10 minutes, one processing booth is open. After the first 10 minutes until the queue clears, two processing booths are open. Each booth processes trucks at a uniform rate of two per minute. What is the average delay per vehicle, the maximum queue length, and the average queue length?arrow_forwardThe floor system of a gymnasium consists of a 130-mm-thick concrete slab resting on four steel beams (A = 9100 mm²) that, in turn, are supported by two steel girders (A = 25600 mm²), as shown in Fig. 2.3. Determine the dead loads acting on beam BF and girder AD. 2.3 Beam BF Uniformly distributed load ㅋㅋ =28.6 (5) (180) + 77 (100) = 16.04 kN/m 16.04 kN/m B 80.2 kN F 80.2 kN.arrow_forward
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage LearningSolid Waste EngineeringCivil EngineeringISBN:9781305635203Author:Worrell, William A.Publisher:Cengage Learning,

