Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
5th Edition
ISBN: 9781305586871
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 13, Problem 7P

(a)

To determine

The expression for y as a function of x and t for the given sinusoidal wave.

(a)

Expert Solution
Check Mark

Answer to Problem 7P

The expression for y as a function of x and t for the given sinusoidal wave is y(x,t)=0.08sin(2.5πx+6.0πt).

Explanation of Solution

Given information:

The value of A is 8.0cm, the value of λ is 80.0cm, the value of f is 3.0Hz and y(0,t) is 0 at t=0.

The general expression for the sinusoidal wave is,

y(x,t)=Asin(2πλx+2πft+ϕ) (I)

y(x,t) is the transverse position of an element of the medium.

A is the amplitude of the wave.

λ is the wavelength.

f is the frequency.

ϕ is the phase.

Substitute 8.0cm for A, 80.0cm for λ and 3.0Hz for f in the above equation.

y(x,t)=(8.0cm×102m1cm)sin(2π80.0cm×102m1cmx+2π(3.0Hz)t+ϕ)=(0.08m)sin(2.5πm1x+(6.0πs1)t+ϕ) (II)

Apply the condition y(0,t)=0 at t=0 in equation (II).

0=(0.08m)sin(2.5πm1×0+6.0π×0+ϕ)0=sinϕϕ=0

Substitute 0 for ϕ in equation (II).

y(x,t)=(0.08m)sin(2.5πm1x+(6.0πs1)t)=0.08sin(2.5πx+6.0πt)

Conclusion:

Therefore, the expression for y as a function of x and t for the given sinusoidal wave is y(x,t)=0.08sin(2.5πx+6.0πt).

(b)

To determine

The expression for y as a function of x and t for the given sinusoidal wave for given condition.

(b)

Expert Solution
Check Mark

Answer to Problem 7P

The expression for y as a function of x and t for the given sinusoidal wave for given condition is y(x,t)=0.08sin(2.5πx+6.0πt0.25π).

Explanation of Solution

Given information:

The value of A is 8.0cm, the value of λ is 80.0cm, the value of f is 3.0Hz and y(x,0) is 0 at x=10.0cm.

Rewrite the equation (II).

y(x,t)=(0.08m)sin(2.5πm1x+(6.0πs1)t+ϕ) (II)

Apply the condition y(x,0)=0 at x=10.0cm in equation (II).

0=(0.08m)sin(2.5πm1×(10.0cm×102m1cm)+6.0π×0+ϕ)0=sin(0.25π+ϕ)0.25π+ϕ=0ϕ=0.25π

Substitute 0.25π for ϕ in equation (II).

y(x,t)=(0.08m)sin(2.5πm1x+(6.0πs1)t0.25π)=0.08sin(2.5πx+6.0πt0.25π)

Conclusion:

Therefore, the expression for y as a function of x and t for the given sinusoidal wave for given condition is y(x,t)=0.08sin(2.5πx+6.0πt0.25π).

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
RT = 4.7E-30 18V IT = 2.3E-3A+ 12 38Ω ли 56Ω ли r5 27Ω ли r3 28Ω r4 > 75Ω r6 600 0.343V 75.8A Now figure out how much current in going through the r4 resistor. |4 = unit And then use that current to find the voltage drop across the r resistor. V4 = unit
7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.
ганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.

Chapter 13 Solutions

Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)

Ch. 13 - Prob. 4OQCh. 13 - When all the strings on a guitar (Fig. OQ13.5) are...Ch. 13 - By what factor would you have to multiply the...Ch. 13 - A sound wave can be characterized as (a) a...Ch. 13 - Prob. 8OQCh. 13 - Prob. 9OQCh. 13 - A source vibrating at constant frequency generates...Ch. 13 - A source of sound vibrates with constant...Ch. 13 - Prob. 12OQCh. 13 - Prob. 13OQCh. 13 - Prob. 14OQCh. 13 - As you travel down the highway in your car, an...Ch. 13 - Prob. 16OQCh. 13 - Suppose an observer and a source of sound are both...Ch. 13 - Prob. 1CQCh. 13 - Prob. 2CQCh. 13 - Prob. 3CQCh. 13 - Prob. 4CQCh. 13 - When a pulse travels on a taut string, does it...Ch. 13 - Prob. 6CQCh. 13 - Prob. 7CQCh. 13 - Prob. 8CQCh. 13 - Prob. 9CQCh. 13 - Prob. 10CQCh. 13 - Prob. 11CQCh. 13 - How can an object move with respect to an observer...Ch. 13 - Prob. 13CQCh. 13 - Prob. 1PCh. 13 - Prob. 2PCh. 13 - Prob. 3PCh. 13 - Prob. 4PCh. 13 - The string shown in Figure P13.5 is driven at a...Ch. 13 - Prob. 6PCh. 13 - Prob. 7PCh. 13 - Prob. 8PCh. 13 - Prob. 9PCh. 13 - A transverse wave on a string is described by the...Ch. 13 - Prob. 11PCh. 13 - Prob. 12PCh. 13 - Prob. 13PCh. 13 - A transverse sinusoidal wave on a string has a...Ch. 13 - A steel wire of length 30.0 m and a copper wire of...Ch. 13 - Prob. 16PCh. 13 - Prob. 17PCh. 13 - Review. A light string with a mass per unit length...Ch. 13 - Prob. 19PCh. 13 - Prob. 20PCh. 13 - A series of pulses, each of amplitude 0.150 m, are...Ch. 13 - Prob. 22PCh. 13 - Prob. 23PCh. 13 - A taut rope has a mass of 0.180 kg and a length of...Ch. 13 - Prob. 25PCh. 13 - Prob. 26PCh. 13 - Prob. 27PCh. 13 - Prob. 28PCh. 13 - Prob. 29PCh. 13 - Prob. 30PCh. 13 - Write an expression that describes the pressure...Ch. 13 - Prob. 32PCh. 13 - Prob. 33PCh. 13 - Prob. 34PCh. 13 - Prob. 35PCh. 13 - Prob. 36PCh. 13 - A sound wave in air has a pressure amplitude equal...Ch. 13 - A rescue plane flies horizontally at a constant...Ch. 13 - A driver travels northbound on a highway at a...Ch. 13 - Prob. 40PCh. 13 - Prob. 41PCh. 13 - Prob. 42PCh. 13 - Prob. 43PCh. 13 - Prob. 44PCh. 13 - Review. A tuning fork vibrating at 512 Hz falls...Ch. 13 - Submarine A travels horizontally at 11.0 m/s...Ch. 13 - Prob. 47PCh. 13 - Prob. 48PCh. 13 - Prob. 49PCh. 13 - Review. A block of mass M, supported by a string,...Ch. 13 - Prob. 51PCh. 13 - Review. A block of mass M hangs from a rubber...Ch. 13 - Prob. 53PCh. 13 - The wave is a particular type of pulse that can...Ch. 13 - Prob. 55PCh. 13 - Prob. 56PCh. 13 - Prob. 57PCh. 13 - Prob. 58PCh. 13 - Prob. 59PCh. 13 - Prob. 60PCh. 13 - Prob. 61PCh. 13 - Prob. 62PCh. 13 - Prob. 63PCh. 13 - Prob. 64PCh. 13 - Prob. 65PCh. 13 - Prob. 66PCh. 13 - Prob. 67PCh. 13 - A sound wave moves down a cylinder as in Active...Ch. 13 - A string on a musical instrument is held under...Ch. 13 - A train whistle (f = 400 Hz) sounds higher or...Ch. 13 - The Doppler equation presented in the text is...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY