College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 58GP
A swimming pool is 3 m wide and 6 m long. The water depth is 1 m. A small boat is placed in the pool and loaded with gold bars. How high does the water level rise if 15 standard gold bars, each of mass 12.4 kg, are placed into the boat? (ignore the mass of the boat.)
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 13 Solutions
College Physics (10th Edition)
Ch. 13 - A clear plastic hose is attached to the narrow end...Ch. 13 - Equation 13.5 shows that an area ratio of 100 to 1...Ch. 13 - Suppose the door of a room makes an airtight, but...Ch. 13 - When a smooth-flowing stream of water comes out of...Ch. 13 - You push an empty glass jar into a tank of water...Ch. 13 - A very smooth wooden block is pressed against the...Ch. 13 - A marble is in a little box that is floating in a...Ch. 13 - If a rocketship traveling through the vacuum of...Ch. 13 - There is a great deal of ice floating on the...Ch. 13 - Submarines can remain at equilibrium at various...
Ch. 13 - You are told, Bernoullis equation tells us that...Ch. 13 - A helium-filled balloon is tied to a light string...Ch. 13 - Which has a greater buoyant force on it, a 25 cm3...Ch. 13 - A mass of sunken lead is resting against the...Ch. 13 - Two equal-mass pieces of metal are sitting side by...Ch. 13 - Prob. 4MCPCh. 13 - A horizontal cylindrical pipe has a part with a...Ch. 13 - If the absolute pressure at a depth d in a lake is...Ch. 13 - Prob. 7MCPCh. 13 - A rigid metal object is dropped into a lake and...Ch. 13 - Prob. 9MCPCh. 13 - Identical-size cubes of lead and aluminum are...Ch. 13 - Two small holes are drilled in the side of a...Ch. 13 - Prob. 12MCPCh. 13 - You purchase a rectangular piece of metal that has...Ch. 13 - A kidnapper demands a 40.0 kg cube of platinum as...Ch. 13 - Calculate the weight of air at 20C in a room that...Ch. 13 - By how many newtons do you increase the weight of...Ch. 13 - How big is a million dollars? At the time this...Ch. 13 - A cube 5.0 cm on each side is made of a metal...Ch. 13 - A cube of compressible material (such as Styrofoam...Ch. 13 - A hollow cylindrical copper pipe is 1.50 m long...Ch. 13 - A uniform lead sphere and a uniform aluminum...Ch. 13 - Prob. 10PCh. 13 - Blood, (a) Mass of blood. The human body typically...Ch. 13 - Landing on Venus. One of the great difficulties in...Ch. 13 - You are designing a manned submersible to...Ch. 13 - Glaucoma. Under normal circumstances, the vitreous...Ch. 13 - A 1-m-tall glass tube is placed on the moon and...Ch. 13 - What gauge pressure must a pump produce to pump...Ch. 13 - Intravenous feeding. A hospital patient is being...Ch. 13 - A 975-kg car has its tires each inflated to 32.0...Ch. 13 - An electrical short cuts off all power to a...Ch. 13 - Standing on your head. (a) When you stand on your...Ch. 13 - You are designing a machine for a space...Ch. 13 - Ear damage from diving. If the force on the...Ch. 13 - A barrel contains a 0.120 m layer of oil of...Ch. 13 - Blood pressure. Systemic blood pressure is...Ch. 13 - The piston of a hydraulic automobile lift is 0.30...Ch. 13 - Prob. 27PCh. 13 - There is a maximum depth at which a diver can...Ch. 13 - A solid aluminum ingot weighs 89 N in air. (a)...Ch. 13 - A block of wood has a density of 700 kg/m3. It is...Ch. 13 - When an open-faced boat has a mass of 5750 kg,...Ch. 13 - An ore sample weighs 17.50 N in air. When the...Ch. 13 - A slab of ice floats on a freshwater lake. What...Ch. 13 - Using data from Appendix E, calculate the average...Ch. 13 - A hollow plastic sphere is held below the surface...Ch. 13 - (a) Calculate the buoyant force of air (density...Ch. 13 - The tip of the iceberg. Icebergs consist of...Ch. 13 - At 20C, the surface tension of water is 0.073 N/m....Ch. 13 - Find the gauge pressure in pascals inside a soap...Ch. 13 - What radius must a water drop have for the...Ch. 13 - At 20C, the surface tension of water is 0.0728 N/m...Ch. 13 - An irrigation canal has a rectangular cross...Ch. 13 - Water is flowing in a pipe with a varying...Ch. 13 - Water is flowing in a cylindrical pipe of varying...Ch. 13 - A shower head has 20 circular openings, each with...Ch. 13 - Prob. 46PCh. 13 - Prob. 47PCh. 13 - A sealed tank containing seawater to a height of...Ch. 13 - What gauge pressure is required in the city water...Ch. 13 - At one point in a pipeline, the waters speed is...Ch. 13 - Lift on an airplane. Air streams horizontally past...Ch. 13 - A golf course sprinkler system discharges water...Ch. 13 - Water discharges from a horizontal cylindrical...Ch. 13 - Prob. 54PCh. 13 - At a certain point in a horizontal pipeline, the...Ch. 13 - Advertisements for a certain small car claim that...Ch. 13 - A U-shaped tube open to the air at both ends...Ch. 13 - A swimming pool is 3 m wide and 6 m long. The...Ch. 13 - A piece of wood is 0.600 m long. 0.250 m wide, and...Ch. 13 - A hot-air balloon has a volume of 2200 m3. The...Ch. 13 - In seawater, a life preserver with a volume of...Ch. 13 - Block A in Figure 13.43 hangs by a cord from...Ch. 13 - A hunk of aluminum is completely covered with a...Ch. 13 - An industrial waste tank contains a layer of...Ch. 13 - An open cylindrical tank of acid rests at the edge...Ch. 13 - Water stands at a depth H in a large, open tank...Ch. 13 - Prob. 67GPCh. 13 - The horizontal pipe shown in Figure 13.45 has a...Ch. 13 - Venturi meter. The Venturi meter is a device used...Ch. 13 - Elephants under pressure. An elephant can swim or...Ch. 13 - Prob. 71PPCh. 13 - Elephants under pressure. An elephant can swim or...Ch. 13 - Prob. 73PP
Additional Science Textbook Solutions
Find more solutions based on key concepts
93. Both the English physicist Michael Faraday and the American physicist Joseph Henry independently discovered...
Conceptual Physical Science (6th Edition)
Repeat Problem 85 for the following cases: (a) the particle moves first along the x-axis from the origin to the...
Essential University Physics: Volume 1 (3rd Edition)
21.47 In a rectangular coordinate system a positive point charge q = 6.00 × 10?9 C is placed at the point x = +...
University Physics (14th Edition)
A conducting loop with area 0.15 m2 and resistance 6.0 lies in the xy plane. A spatially uniform magnetic fiel...
Essential University Physics: Volume 2 (3rd Edition)
35.10 If the entire apparatus of Exercise 35.9 (slits, screen, and space in between) is immersed in water, what...
University Physics with Modern Physics (14th Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A horizontal pipe 10.0 cm in diameter has a smooth reduction to a pipe 5.00 cm in diameter. If the pressure of the water in the larger pipe is 8.00 104 Pa and the pressure in the smaller pipe is 6.00 104 Pa, at what rate does water flow through the pipes?arrow_forwardA large storage tank with an open top is filled to a height h0. The tank is punctured at a height h above the bottom of the tank (Fig. P15.39). Find an expression for how far from the tank the exiting stream lands. Figure P15.39arrow_forwardA table-tennis ball has a diameter of 3.80 cm and average density of 0.084 0 g/cm3. What force is required to hold it completely submerged under water?arrow_forward
- A 10.0-kg block of metal measuring 12.0 cm by 10.0 cm by 10.0 cm is suspended from a scale and immersed in water as shown in Figure P15.24b. The 12.0-cm dimension is vertical, and the top of the block is 5.00 cm below the surface of the water. (a) What are the magnitudes of the forces acting on the top and on the bottom of the block due to the surrounding water? (b) What is the reading of the spring scale? (c) Show that the buoyant force equals the difference between the forces at the top and bottom of the block.arrow_forwardReview. The tank in Figure P15.13 is filled with water of depth d = 2.00 m. At the bottom of one sidewall is a rectangular hatch of height h = 1.00 m and width w = 2.00 m that is hinged at the top of the hatch. (a) Determine the magnitude of the force the water exerts on the hatch. (b) Find the magnitude of the torque exerted by the water about the hinges.arrow_forwardA U-tube open at both ends is partially filled with water (Fig. P15.67a). Oil having a density 750 kg/m3 is then poured into the right arm and forms a column L = 5.00 cm high (Fig. P15.67b). (a) Determine the difference h in the heights of the two liquid surfaces. (b) The right arm is then shielded from any air motion while air is blown across the top of the left arm until the surfaces of the two liquids are at the same height (Fig. P15.67c). Determine the speed of the air being blown across the left arm. Take the density of air as constant at 1.20 kg/m3.arrow_forward
- Figure P15.47 shows a stream of water in steady flow from a kitchen faucet. At the faucet, the diameter of the stream is 0.960 cm. The stream fills a 125-cm3 container in 16.3 s. Find the diameter of the stream 13.0 cm below the opening of the faucet. Figure P15.47arrow_forwardA beaker of mass mb containing oil of mass mo and density o rests on a scale. A block of iron of mass mFe suspended from a spring scale is completely submerged in the oil as shown in Figure P15.63. Determine the equilibrium readings of both scales. Figure P15.63 Problems 63 and 64.arrow_forwardReview. The tank in Figure P15.13 is filled with water of depth d. At the bottom of one sidewall is a rectangular hatch of height h and width w that is hinged at the top of the hatch. (a) Determine the magnitude of the force the water exerts on the hatch. (b) Find the magnitude of the torque exerted by die water about die hinges.arrow_forward
- Figure P15.52 shows a Venturi meter, which may be used to measure the speed of a fluid. It consists of a Venturi tube through which the fluid moves and a manometer used to measure the pressure difference between regions 1 and 2. The fluid of density tube moves from left to right in the Venturi tube. Its speed in region 1 is v1, and its speed in region 2 is v2. The necks cross-sectional area is A2, and the cross-sectional area of the rest of the tube is A1. The manometer contains a fluid of density mano. a. Do you expect the fluid to be higher on the left side or the right side of the manometer? b. The speed v2 of the fluid in the neck comes from measuring the difference between the heights (yR yL) of the fluid on the two sides of manometer. Derive an expression for v2 in terms of (yR yL), A1, A2, tube, and mano. FIGURE P15.52arrow_forwardReview. In a water pistol, a piston drives water through a large tube of area A1 into a smaller tube of area A2 as shown in Figure P14.46. The radius of the large tube is 1.00 cm and that of the small tube is 1.00 mm. The smaller tube is 3.00 cm above the larger tube. (a) If the pistol is fired horizontally at a height of 1.50 m, determine the time interval required for the water to travel from the nozzle to the ground. Neglect air resistance and assume atmospheric pressure is 1.00 atm. (b) If the desired range of the stream is 8.00 m, with what speed v2 must the stream leave the nozzle? (c) At what speed v1 must the plunger be moved to achieve the desired range? (d) What is the pressure at the nozzle? (e) Find the pressure needed in the larger tube. (f) Calculate the force that must be exerted on the trigger to achieve the desired range. (The force that must be exerted is due to pressure over and above atmospheric pressure.) Figure P14.46arrow_forwardWater flows through a fire hose of diameter 6.35 cm at a rate of 0.0120 m3/s. The fire hose ends in a nozzle of inner diameter 2.20 cm. What is the speed with which the water exits the nozzle?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Fluids in Motion: Crash Course Physics #15; Author: Crash Course;https://www.youtube.com/watch?v=fJefjG3xhW0;License: Standard YouTube License, CC-BY