Foundations of Astronomy
13th Edition
ISBN: 9781305079151
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 4DQ
To determine
Why think that those ions are located where they are in relation to the central star.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How does one go about these questions?
Physics written by hand.
A star has a measured radial velocity of 300 km/s.
If you measure the wavelength of a particular
spectral line of Hydrogen as 657.18 nm, what was
the laboratory wavelength (in nm) of the line?
(Round your answer to at least one decimal place.)
nm
Which spectral line does this likely correspond to?
Balmer-alpha (656.3 nm)
Balmer-beta (486.1 nm)
Balmer-gamma (434.0 nm)
Balmer-del ta (410.2 nm)
Chapter 13 Solutions
Foundations of Astronomy
Ch. 13 - Prob. 1RQCh. 13 - Prob. 2RQCh. 13 - Prob. 3RQCh. 13 - Prob. 4RQCh. 13 - Prob. 5RQCh. 13 - Prob. 6RQCh. 13 - Prob. 7RQCh. 13 - Prob. 8RQCh. 13 - Prob. 9RQCh. 13 - Prob. 10RQ
Ch. 13 - Prob. 11RQCh. 13 - Prob. 12RQCh. 13 - Prob. 13RQCh. 13 - Prob. 14RQCh. 13 - Prob. 15RQCh. 13 - Prob. 16RQCh. 13 - Prob. 17RQCh. 13 - Prob. 18RQCh. 13 - Prob. 19RQCh. 13 - Prob. 20RQCh. 13 - Prob. 21RQCh. 13 - Prob. 22RQCh. 13 - Prob. 23RQCh. 13 - Prob. 24RQCh. 13 - Prob. 25RQCh. 13 - Prob. 26RQCh. 13 - Prob. 1DQCh. 13 - Prob. 2DQCh. 13 - Prob. 3DQCh. 13 - Prob. 4DQCh. 13 - Prob. 5DQCh. 13 - Prob. 1PCh. 13 - Prob. 2PCh. 13 - Prob. 3PCh. 13 - Prob. 4PCh. 13 - Prob. 5PCh. 13 - Prob. 6PCh. 13 - Prob. 7PCh. 13 - Prob. 8PCh. 13 - Add a fourth column to Table 13-1 and write in the...Ch. 13 - Prob. 10PCh. 13 - Prob. 11PCh. 13 - Prob. 12PCh. 13 - Prob. 13PCh. 13 - Prob. 14PCh. 13 - Prob. 15PCh. 13 - Prob. 1LTLCh. 13 - Prob. 2LTLCh. 13 - Prob. 3LTLCh. 13 - Prob. 4LTLCh. 13 - Prob. 5LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Which of the following can you determine about a star without knowing its distance, and which can you not determine: radial velocity, temperature, apparent brightness, or luminosity? Explain.arrow_forwardA star has a measured radial velocity of 100 km/s. If you measure the wavelength of a particular spectral line of Hydrogen as 486.42 nm, what was the laboratory wavelength (in nm) of the line? (Round your answer to at least one decimal place.) Which spectral line does this likely correspond to? Balmer-alpha (656.3 nm) Balmer-beta (486.1 nm) Balmer-gamma (434.0 nm) Balmer-delta (410.2 nm)arrow_forwardAn O8 V star has an apparent visual magnitude of +5. Use the method of spectroscopic parallax to estimate the distance to the star (in pc). (Hints: Refer to one of the H–R diagrams in the chapter, and use the magnitude–distance formula, d = 10(mV − MV + 5)/5 where d is the distance in parsecs, mV and MV are the apparent and absolute visual magnitude respectively.)arrow_forward
- Two stars are identified on the Hertzsprung-Russell diagram below. Hertzsprung-Russell Diagram Temperature (K) 40,000 20,00010,000 7,500 5,500 4,500 3,000 10 10 10 www 10 10 B. G K M Spectral Class Based on this diagram, how do the characteristics of Star 1 and Star 2 compare? Star 1 is cooler and less bright than Star 2. O Star 1 is hotter and brighter than Star 2. O Star 1 is cooler and brighter than Star 2. O Star 1 is hotter and less bright than Star 2. O Aisoujunarrow_forwardLet us imagine that the spectrum of a star is collected and we find the absorption line of Hydrogen-Alpha (the deepest absorption line of hydrogen in the visible part of the electromagnetic spectrum) to be observed at 656.5 nm instead of 656.3 nm as measured in a lab here on Earth. What is the velocity of this star in m/s? (Hint: speed of light is 3*10^8 m/s; leave the units off of your answer)arrow_forwardLet us imagine that the spectrum of a star is collected and we find the absorption line of Hydrogen-Alpha (the deepest absorption line of hydrogen in the visible part of the electromagnetic spectrum) to be observed at 656.5 nm instead of 656.3 nm as measured in a lab here on Earth. What is the velocity of this star in m/s? (Hint: speed of light is 3*10^8 m/s; leave the units off of your answer) Question 4 of 7 A Moving to another question will save this response. 1 6:59 & backsarrow_forward
- helparrow_forwardStar 1 and star 2 have the same V-magnitude, V = 7.5. However, they have different B-magnitudes, B1 = 7.2 and B2 = 8.5. What is the flux ratio, f1/f2, in the B-band?arrow_forward1:Which star has been redshifted the most? 2:Which star is moving towards us the fastest? Star C Star D Star A Star B 3:The wavelength of this spectral feature is measured to be 600nm in the lab, and 609 in Star A. What is the radial velocity of Star A? using km/s,arrow_forward
- Star 1 and star 2 have the same V-magnitude, V = 7.5. However, they have different B-magnitudes, B1 = 7.2 and B2 = 8.5. If star 2 has a distance that is 10 times further than star 1, what are the luminosity ratios, L1/L2, in both B- and V-bands?arrow_forwardTwo stars of identical spectral type are discovered within the Milky Way galaxy. Star #1 lies at a distance of 1000 light-years. The observed flux from star #2 is 25 times smaller than that from star #1. a) How far away is star #2 in light-years? Explain your reasoning. b) A third star of the same type is discovered in a nearby galaxy, 5 × 106 light-years away. How much fainter do we expect star #3 to be, compared to star #2? Explain your reasoning.arrow_forwardChoose the correct statements concerning spectral classes of stars. (Give ALL correct answers, i.e., B, AC, BCD...) A) Neutral hydrogen lines dominate the spectrum for stars with temperatures around 10,000 K because a lot of the hydrogen is in the n=2 level. B) Hydrogen lines are weak in type O-stars because most of it is completely ionized. C) Oh Be A Fine Guy/Girl Kiss Me, is a mnemonic for remembering spectral classes. D) The spectral sequence has recently been expanded to include L, T, and Y classes. E) K-stars are dominated by lines from ionized helium because they are so hot. F) The spectral types of stars arise primarily as a result of differences in temperature.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax