Fundamentals Of Thermal-fluid Sciences In Si Units
Fundamentals Of Thermal-fluid Sciences In Si Units
5th Edition
ISBN: 9789814720953
Author: Yunus Cengel, Robert Turner, John Cimbala
Publisher: McGraw-Hill Education
bartleby

Videos

Question
Book Icon
Chapter 13, Problem 48RQ
To determine

The force acting on the flanges of the elbow.

Expert Solution & Answer
Check Mark

Explanation of Solution

Given:

The flow rate (Q) of the water is 0.16m3/s.

The Diameter (D) of the elbow is 30cm.

The exit Diameter (d) of the elbow is 10cm.

The height (h) of the elbow is 10cm.

The internal volume (V) of the elbow is 0.03m3.

Calculation:

Assume the density of water to be 1000kg/m3.

Calculate the velocity (V1) using the relation.

    V1=qA1V1=(0.16m3/sπ4(30cm×1m100cm))=2.26m/s

Calculate the velocity (V2) using the relation.

  V2=qA2V2=(0.16m3/sπ4(10cm×1m100cm))=20.37m/s

Calculate the constant (z1) using the relation.

  z1=0.5

Calculate the pressure (P) using the Bernoulli’s relation.

    P1+12ρV12+yz1=P2+12ρV22+yz2P1=12ρ(V22V12)yz1=12(1000kg/m3)((20.37m/s)2(2.26m/s)2)(9810)(0.5)=20010Pa

Calculate the linear momentum equation (Fx) using the relation.

    Fx=cvVρVndA+tcvρVdV

Calculate the component (Fx) using the relation.

    V1ρ(V1)A1+(V2cosθ)ρ(V2)A2=P1A1+FxρQV12ρQV22cosθP1A1=FxρQ(V12V22cosθ)P1A1=Fx[(1000kg/m3)(0.16m3/s)((2.26m/s)2(20.37m/s)2cos(60°))(20010Pa×0.03m3)]=FxFx=48150N

Calculate the component (Fy) using the relation.

  0+(V2sinθ)ρ(V2)A2=Wwater,cv+FyρV22sinθ+Wcv=Fy[(1000kg/m3)(20.37m/s)2sin(60)+9810×π4(0.03m3)]=FyFy=359052N

Calculate the resultant force (R) using the relation.

    R=Fx2+Fy2=(48150N)2+(359052N)2=362266N

Calculate the direction of resultant R.

  tanβ=FyFx=(359052N48150N)β=82.4°

Thus, the resultant required force is R=362266N.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
I REPEAT!!!!! I NEED HANDDRAWING!!!!! NOT A USELESS EXPLANATION!!!! I REPEAT SUBMIT A HANDDRAWING IF YOU CANNOT UNDERSTAND THIS SKIP IT !  I need the real handdrawing complete it by adding these :  Pneumatic Valves Each linear actuator must be controlled by a directional control valve (DCV) (e.g., 5/2 or 4/2 valve). The bi-directional motor requires a reversible valve to change rotation direction. Pressure Regulators & Air Supply Include two pressure regulators as per the assignment requirement. Show the main compressed air supply line connecting all components. Limit Switches & Safety Features Attach limit switches to each actuator to detect positions. Implement a two-handed push-button safety system to control actuator movement. Connections Between Components Draw air supply lines linking the compressor, valves, and actuators. Clearly label all inputs and outputs for better understanding.
I need the real handdrawing complete it by adding these :  Pneumatic Valves Each linear actuator must be controlled by a directional control valve (DCV) (e.g., 5/2 or 4/2 valve). The bi-directional motor requires a reversible valve to change rotation direction. Pressure Regulators & Air Supply Include two pressure regulators as per the assignment requirement. Show the main compressed air supply line connecting all components. Limit Switches & Safety Features Attach limit switches to each actuator to detect positions. Implement a two-handed push-button safety system to control actuator movement. Connections Between Components Draw air supply lines linking the compressor, valves, and actuators. Clearly label all inputs and outputs for better understanding.
An elastic bar of the length L and cross section area A is rigidly attached to the ceiling of a room, and it supports a mass M. Due to the acceleration of gravity g the rod deforms vertically. The deformation of the rod is measured by the vertical displacement u(x) governed by the following equations: dx (σ(x)) + b(x) = 0 PDE σ(x) = Edx du Hooke's law (1) b(x) = gp= body force per unit volume where E is the constant Young's modulus, p is the density, and σ(x) the axial stress in the rod. g * I u(x) L 2

Chapter 13 Solutions

Fundamentals Of Thermal-fluid Sciences In Si Units

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license