ALEKS CORPORATION ALEKS 360 IA BEG & INT
6th Edition
ISBN: 9781264242221
Author: Miller
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13, Problem 43RE
For Exercises 40–43, identify the equations as representing an ellipse or a hyperbola.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is the vertex, axis of symmerty, all of the solutions, all of the end behaviors, the increasing interval, the decreasing interval, describe all of the transformations that have occurred EXAMPLE Vertical shrink/compression (wider). or Vertical translation down, the domain and range of this graph EXAMPLE Domain: x ≤ -1 Range: y ≥ -4.
4.
Select all of the solutions for x²+x - 12 = 0?
A. -12
B. -4
C. -3
D. 3
E 4
F 12
4 of 10
2.
Select all of the polynomials with the degree of 7.
A. h(x) = (4x + 2)³(x − 7)(3x + 1)4
B
h(x) = (x + 7)³(2x + 1)^(6x − 5)²
☐
Ch(x)=(3x² + 9)(x + 4)(8x + 2)ª
h(x) = (x + 6)²(9x + 2) (x − 3)
h(x)=(-x-7)² (x + 8)²(7x + 4)³
Scroll down to see more
2 of 10
Chapter 13 Solutions
ALEKS CORPORATION ALEKS 360 IA BEG & INT
Ch. 13.1 - Find the distance between the points ( − 4 , − 2 )...Ch. 13.1 - Prob. 2SPCh. 13.1 - Prob. 3SPCh. 13.1 - Prob. 4SPCh. 13.1 - Prob. 5SPCh. 13.1 - Prob. 6SPCh. 13.1 - Prob. 7SPCh. 13.1 - Prob. 8SPCh. 13.1 - Prob. 1PECh. 13.1 - Prob. 2PE
Ch. 13.1 - Prob. 3PECh. 13.1 - Prob. 4PECh. 13.1 - Prob. 5PECh. 13.1 - Prob. 6PECh. 13.1 - Prob. 7PECh. 13.1 - Prob. 8PECh. 13.1 - Prob. 9PECh. 13.1 - Prob. 10PECh. 13.1 - Prob. 11PECh. 13.1 - Prob. 12PECh. 13.1 - Prob. 13PECh. 13.1 - Prob. 14PECh. 13.1 - Prob. 15PECh. 13.1 - Prob. 16PECh. 13.1 - Prob. 17PECh. 13.1 - Prob. 18PECh. 13.1 - Prob. 19PECh. 13.1 - Prob. 20PECh. 13.1 - Prob. 21PECh. 13.1 - Prob. 22PECh. 13.1 - Prob. 23PECh. 13.1 - Prob. 24PECh. 13.1 - Prob. 25PECh. 13.1 - Prob. 26PECh. 13.1 - Prob. 27PECh. 13.1 - Prob. 28PECh. 13.1 - Prob. 29PECh. 13.1 - Prob. 30PECh. 13.1 - Prob. 31PECh. 13.1 - Prob. 32PECh. 13.1 - Prob. 33PECh. 13.1 - Prob. 34PECh. 13.1 - Prob. 35PECh. 13.1 - Prob. 36PECh. 13.1 - Prob. 37PECh. 13.1 - Prob. 38PECh. 13.1 - Prob. 39PECh. 13.1 - Prob. 40PECh. 13.1 - Prob. 41PECh. 13.1 - Prob. 42PECh. 13.1 - Prob. 43PECh. 13.1 - Prob. 44PECh. 13.1 - Prob. 45PECh. 13.1 - Prob. 46PECh. 13.1 - Prob. 47PECh. 13.1 - Prob. 48PECh. 13.1 - For Exercises 49–54, write an equation that...Ch. 13.1 - Prob. 50PECh. 13.1 - Prob. 51PECh. 13.1 - Prob. 52PECh. 13.1 - Prob. 53PECh. 13.1 - Prob. 54PECh. 13.1 - Prob. 55PECh. 13.1 - Prob. 56PECh. 13.1 - Prob. 57PECh. 13.1 - Prob. 58PECh. 13.1 - Prob. 59PECh. 13.1 - Prob. 60PECh. 13.1 - Prob. 61PECh. 13.1 - Prob. 62PECh. 13.1 - Prob. 63PECh. 13.1 - Prob. 64PECh. 13.1 - Prob. 65PECh. 13.1 - Prob. 66PECh. 13.1 - Prob. 67PECh. 13.1 - Prob. 68PECh. 13.1 - Prob. 69PECh. 13.1 - For Exercises 65–72, find the midpoint of the line...Ch. 13.1 - For Exercise 65-72, find the midpoint of the line...Ch. 13.1 - For Exercise 65-72, find the midpoint of the line...Ch. 13.1 - Prob. 73PECh. 13.1 - Prob. 74PECh. 13.1 - For Exercises 75–78, the two given points are...Ch. 13.1 - Prob. 76PECh. 13.1 - Prob. 77PECh. 13.1 - Prob. 78PECh. 13.1 - Prob. 79PECh. 13.1 - Prob. 80PECh. 13.1 - Prob. 81PECh. 13.1 - Prob. 82PECh. 13.1 - Prob. 83PECh. 13.1 - Prob. 84PECh. 13.1 - Prob. 85PECh. 13.1 - Prob. 86PECh. 13.1 - Prob. 87PECh. 13.1 - Prob. 88PECh. 13.2 - Prob. 1SPCh. 13.2 - Prob. 2SPCh. 13.2 - Prob. 3SPCh. 13.2 - Prob. 4SPCh. 13.2 - Prob. 5SPCh. 13.2 - Prob. 6SPCh. 13.2 - Prob. 7SPCh. 13.2 - Prob. 8SPCh. 13.2 - Prob. 9SPCh. 13.2 - Prob. 10SPCh. 13.2 - Prob. 11SPCh. 13.2 - 1. a. A circle, a parabola, an ellipse, and a...Ch. 13.2 - Prob. 2PECh. 13.2 - Prob. 3PECh. 13.2 - Prob. 4PECh. 13.2 - Prob. 5PECh. 13.2 - Prob. 6PECh. 13.2 - Prob. 7PECh. 13.2 - Prob. 8PECh. 13.2 - Prob. 9PECh. 13.2 - Prob. 10PECh. 13.2 - Prob. 11PECh. 13.2 - Prob. 12PECh. 13.2 - Prob. 13PECh. 13.2 - Prob. 14PECh. 13.2 - Prob. 15PECh. 13.2 - Prob. 16PECh. 13.2 - Prob. 17PECh. 13.2 - Prob. 18PECh. 13.2 - Prob. 19PECh. 13.2 - For Exercises 25–33, determine the vertex by using...Ch. 13.2 - Prob. 21PECh. 13.2 - Prob. 22PECh. 13.2 - Prob. 23PECh. 13.2 - Prob. 24PECh. 13.2 - Prob. 25PECh. 13.2 - Prob. 26PECh. 13.2 - Prob. 27PECh. 13.2 - Prob. 28PECh. 13.2 - Prob. 29PECh. 13.2 - Prob. 30PECh. 13.2 - Prob. 31PECh. 13.2 - Prob. 32PECh. 13.2 - Prob. 33PECh. 13.2 - Prob. 34PECh. 13.2 - Prob. 35PECh. 13.2 - Prob. 36PECh. 13.2 - Prob. 37PECh. 13.2 - Prob. 38PECh. 13.2 - Prob. 39PECh. 13.2 - Prob. 40PECh. 13.2 - Prob. 41PECh. 13.2 - Prob. 42PECh. 13.2 - Prob. 43PECh. 13.3 - Prob. 1SPCh. 13.3 - Prob. 2SPCh. 13.3 - Prob. 3SPCh. 13.3 - Prob. 4SPCh. 13.3 - Prob. 5SPCh. 13.3 - Prob. 1PECh. 13.3 - Prob. 2PECh. 13.3 - Prob. 3PECh. 13.3 - Prob. 4PECh. 13.3 - Prob. 5PECh. 13.3 - Prob. 6PECh. 13.3 - Prob. 7PECh. 13.3 - Prob. 8PECh. 13.3 - Prob. 9PECh. 13.3 - Prob. 10PECh. 13.3 - Prob. 11PECh. 13.3 - Prob. 12PECh. 13.3 - Prob. 13PECh. 13.3 - Prob. 14PECh. 13.3 - Prob. 15PECh. 13.3 - Prob. 16PECh. 13.3 - Prob. 17PECh. 13.3 - Prob. 18PECh. 13.3 - Prob. 19PECh. 13.3 - Prob. 20PECh. 13.3 - Prob. 21PECh. 13.3 - Prob. 22PECh. 13.3 - Prob. 23PECh. 13.3 - Prob. 24PECh. 13.3 - Prob. 25PECh. 13.3 - Prob. 26PECh. 13.3 - Prob. 27PECh. 13.3 - Prob. 28PECh. 13.3 - Prob. 29PECh. 13.3 - Prob. 30PECh. 13.3 - Prob. 31PECh. 13.3 - Prob. 32PECh. 13.3 - For Exercises 33–40, use the equation in standard...Ch. 13.3 - Prob. 34PECh. 13.3 - Prob. 35PECh. 13.3 - Prob. 36PECh. 13.3 - Prob. 37PECh. 13.3 - Prob. 38PECh. 13.3 - Prob. 39PECh. 13.3 - Prob. 40PECh. 13.3 - Prob. 41PECh. 13.3 - Prob. 42PECh. 13.3 - Prob. 43PECh. 13.3 - Prob. 44PECh. 13.3 - Prob. 45PECh. 13.3 - Prob. 46PECh. 13.3 - Prob. 47PECh. 13.3 - Prob. 48PECh. 13.3 - Prob. 49PECh. 13.3 - Prob. 50PECh. 13.3 - Prob. 51PECh. 13.3 - Prob. 52PECh. 13.3 - Prob. 1PRECh. 13.3 - For Exercises 1–8, identify the formula. x 2 a 2 +...Ch. 13.3 - Prob. 3PRECh. 13.3 - Prob. 4PRECh. 13.3 - Prob. 5PRECh. 13.3 - Prob. 6PRECh. 13.3 - Prob. 7PRECh. 13.3 - Prob. 8PRECh. 13.3 - Prob. 9PRECh. 13.3 - Prob. 10PRECh. 13.3 - Prob. 11PRECh. 13.3 - Prob. 12PRECh. 13.3 - Prob. 13PRECh. 13.3 - Prob. 14PRECh. 13.3 - Prob. 15PRECh. 13.3 - Prob. 16PRECh. 13.3 - Prob. 17PRECh. 13.3 - Prob. 18PRECh. 13.3 - Prob. 19PRECh. 13.3 - Prob. 20PRECh. 13.3 - Prob. 21PRECh. 13.3 - Prob. 22PRECh. 13.3 - Prob. 23PRECh. 13.3 - Prob. 24PRECh. 13.3 - Prob. 25PRECh. 13.3 - Prob. 26PRECh. 13.3 - Prob. 27PRECh. 13.3 - Prob. 28PRECh. 13.3 - Prob. 29PRECh. 13.3 - Prob. 30PRECh. 13.4 - Given the system 2 x + y = 5 x 2 + y 2 = 50 Solve...Ch. 13.4 - Prob. 2SPCh. 13.4 - Prob. 3SPCh. 13.4 - Prob. 4SPCh. 13.4 - Solve the system by using the substitution method....Ch. 13.4 - Prob. 6SPCh. 13.4 - 1. a. A _______ system of equations in two...Ch. 13.4 - Prob. 2PECh. 13.4 - Prob. 3PECh. 13.4 - Prob. 4PECh. 13.4 - Prob. 5PECh. 13.4 - Prob. 6PECh. 13.4 - Prob. 7PECh. 13.4 - Prob. 8PECh. 13.4 - For Exercises 17–22, sketch each system of...Ch. 13.4 - Prob. 10PECh. 13.4 - Prob. 11PECh. 13.4 - Prob. 12PECh. 13.4 - Prob. 13PECh. 13.4 - Prob. 14PECh. 13.4 - Prob. 15PECh. 13.4 - Prob. 16PECh. 13.4 - Prob. 17PECh. 13.4 - Prob. 18PECh. 13.4 - Prob. 19PECh. 13.4 - Prob. 20PECh. 13.4 - Prob. 21PECh. 13.4 - Prob. 22PECh. 13.4 - Prob. 23PECh. 13.4 - Prob. 24PECh. 13.4 - Prob. 25PECh. 13.4 - Prob. 26PECh. 13.4 - Prob. 27PECh. 13.4 - Prob. 28PECh. 13.4 - Prob. 29PECh. 13.4 - For Exercises 32–48, solve the system of nonlinear...Ch. 13.4 - For Exercises 32–48, solve the system of nonlinear...Ch. 13.4 - Prob. 32PECh. 13.4 - Prob. 33PECh. 13.4 - Prob. 34PECh. 13.4 - Prob. 35PECh. 13.4 - Prob. 36PECh. 13.4 - Prob. 37PECh. 13.4 - Prob. 38PECh. 13.4 - Prob. 39PECh. 13.4 - For Exercises 32–48, solve the system of nonlinear...Ch. 13.4 - Prob. 41PECh. 13.4 - Prob. 42PECh. 13.4 - Prob. 43PECh. 13.4 - Prob. 44PECh. 13.4 - Prob. 45PECh. 13.4 - Prob. 46PECh. 13.4 - Prob. 47PECh. 13.4 - Prob. 48PECh. 13.4 - Prob. 49PECh. 13.4 - Prob. 50PECh. 13.5 - Graph the solution set of the inequality. x 2 + y...Ch. 13.5 - Prob. 2SPCh. 13.5 - Prob. 3SPCh. 13.5 - Prob. 4SPCh. 13.5 - Prob. 1PECh. 13.5 - Prob. 2PECh. 13.5 - Prob. 3PECh. 13.5 - Prob. 4PECh. 13.5 - a. Graph the solution set for x 2 + y 2 ≤ 9 . b....Ch. 13.5 - a. Graph the solution set for x 2 4 + y 2 9 ≥ 1....Ch. 13.5 - 19. a. Graph the solution set for.
b. How would...Ch. 13.5 - 20. a. Graph the solution set for
b. How...Ch. 13.5 - Prob. 9PECh. 13.5 - 22. A coordinate system is placed at the center of...Ch. 13.5 - For Exercises 23–37, graph the solution set. (See...Ch. 13.5 - For Exercises 23–37, graph the solution set. (See...Ch. 13.5 - Prob. 13PECh. 13.5 - For Exercises 23–37, graph the solution set. (See...Ch. 13.5 - Prob. 15PECh. 13.5 - Prob. 16PECh. 13.5 - Prob. 17PECh. 13.5 - Prob. 18PECh. 13.5 - Prob. 19PECh. 13.5 - Prob. 20PECh. 13.5 - Prob. 21PECh. 13.5 - Prob. 22PECh. 13.5 - For Exercises 23–37, graph the solution set. (See...Ch. 13.5 - For Exercises 23–37, graph the solution set. (See...Ch. 13.5 - Prob. 25PECh. 13.5 - For Exercises 38–51, graph the solution set to the...Ch. 13.5 - Prob. 27PECh. 13.5 - Prob. 28PECh. 13.5 - Prob. 29PECh. 13.5 - Prob. 30PECh. 13.5 - Prob. 31PECh. 13.5 - Prob. 32PECh. 13.5 - Prob. 33PECh. 13.5 - Prob. 34PECh. 13.5 - Prob. 35PECh. 13.5 - Prob. 36PECh. 13.5 - Prob. 37PECh. 13.5 - Prob. 38PECh. 13.5 - Prob. 39PECh. 13.5 - Prob. 40PECh. 13.5 - Prob. 41PECh. 13.5 - Prob. 42PECh. 13.5 - Prob. 43PECh. 13 - For Exercises 1-2, find the distance between the...Ch. 13 - For Exercises 1-2, find the distance between the...Ch. 13 - Find x such that ( x , 5 ) is 5 units from ( 2 , 9...Ch. 13 - 4. Find x such that is 3 units from
Ch. 13 - Prob. 5RECh. 13 - For Exercises 5–8, find the center and the radius...Ch. 13 - Prob. 7RECh. 13 - For Exercises 5–8, find the center and the radius...Ch. 13 - Prob. 9RECh. 13 - For Exercises 10–13, write the equation of the...Ch. 13 - Prob. 11RECh. 13 - Prob. 12RECh. 13 - Prob. 13RECh. 13 - Prob. 14RECh. 13 - Prob. 15RECh. 13 - For Exercises 16–17, find the midpoint of the...Ch. 13 - For Exercises 16–17, find the midpoint of the...Ch. 13 - For Exercises 18–21, determine whether the axis of...Ch. 13 - For Exercises 18–21, determine whether the axis of...Ch. 13 - For Exercises 18–21, determine whether the axis of...Ch. 13 - For Exercises 18–21, determine whether the axis of...Ch. 13 - For Exercises 22–25, determine the coordinates of...Ch. 13 - For Exercises 22–25, determine the coordinates of...Ch. 13 - For Exercises 22–25, determine the coordinates of...Ch. 13 - For Exercises 22–25, determine the coordinates of...Ch. 13 - For Exercises 26–29, write the equation in...Ch. 13 - For Exercises 26–29, write the equation in...Ch. 13 - For Exercises 26–29, write the equation in...Ch. 13 - For Exercises 26–29, write the equation in...Ch. 13 - For Exercises 30–31, identify the x- and...Ch. 13 - For Exercises 30–31, identify the x- and...Ch. 13 - For Exercises 32–33, identify the center of the...Ch. 13 - For Exercises 32–33, identify the center of the...Ch. 13 - For Exercises 34–37, determine whether the...Ch. 13 - For Exercises 34–37, determine whether the...Ch. 13 - For Exercises 34–37, determine whether the...Ch. 13 - For Exercises 34–37, determine whether the...Ch. 13 - For Exercises 38–39, graph the hyperbola by first...Ch. 13 - For Exercises 38–39, graph the hyperbola by first...Ch. 13 - For Exercises 40–43, identify the equations as...Ch. 13 - For Exercises 40–43, identify the equations as...Ch. 13 - For Exercises 40–43, identify the equations as...Ch. 13 - For Exercises 40–43, identify the equations as...Ch. 13 - For Exercises 44–47, a. Identify each equation as...Ch. 13 - For Exercises 44–47,
a. Identify each equation as...Ch. 13 - For Exercises 44–47, a. Identify each equation as...Ch. 13 - For Exercises 44–47,
a. Identify each equation as...Ch. 13 - For Exercises 48–53, solve the system of nonlinear...Ch. 13 - For Exercises 48–53, solve the system of nonlinear...Ch. 13 - For Exercises 48–53, solve the system of nonlinear...Ch. 13 - For Exercises 48–53, solve the system of nonlinear...Ch. 13 - For Exercises 48–53, solve the system of nonlinear...Ch. 13 - For Exercises 48–53, solve the system of nonlinear...Ch. 13 - For Exercises 54–59, graph the solution set to the...Ch. 13 - For Exercises 54–59, graph the solution set to the...Ch. 13 - For Exercises 54–59, graph the solution set to the...Ch. 13 - For Exercises 54–59, graph the solution set to the...Ch. 13 - For Exercises 54–59, graph the solution set to the...Ch. 13 - For Exercises 54–59, graph the solution set to the...Ch. 13 - For Exercises 60–61, graph the solution set to the...Ch. 13 - For Exercises 60–61, graph the solution set to the...Ch. 13 - 1. Use the distance formula to find the distance...Ch. 13 - Prob. 2TCh. 13 - Prob. 3TCh. 13 - Prob. 4TCh. 13 - 5. Find the center of the circle that has a...Ch. 13 - Determine the vertex and the equation of the axis...Ch. 13 - Write the equation in standard form y = a ( x − h...Ch. 13 - 8. Graph the ellipse.
Ch. 13 - 9. Graph the ellipse.
Ch. 13 - Graph the hyperbola. y 2 − x 2 4 = 1Ch. 13 - For Exercises 11–12, solve the system and identify...Ch. 13 - For Exercises 11–12, solve the system and identify...Ch. 13 - Describe the circumstances in which a nonlinear...Ch. 13 - 14. Solve the system by using either the...Ch. 13 - For Exercises 15–18, graph the solution...Ch. 13 - For Exercises 15–18, graph the solution...Ch. 13 - For Exercises 15–18, graph the solution set. x < y...Ch. 13 - For Exercises 15–18, graph the solution set. y < x...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- 1. If all of the zeros for a polynomial are included in the graph, which polynomial could the graph represent? 100 -6 -2 0 2 100 200arrow_forward3. Select the polynomial that matches the description given: Zero at 4 with multiplicity 3 Zero at −1 with multiplicity 2 Zero at -10 with multiplicity 1 Zero at 5 with multiplicity 5 ○ A. P(x) = (x − 4)³(x + 1)²(x + 10)(x — 5)³ B - P(x) = (x + 4)³(x − 1)²(x − 10)(x + 5)³ ○ ° P(x) = (1 − 3)'(x + 2)(x + 1)"'" (x — 5)³ 51 P(r) = (x-4)³(x − 1)(x + 10)(x − 5 3 of 10arrow_forwardMatch the equation, graph, and description of transformation. Horizontal translation 1 unit right; vertical translation 1 unit up; vertical shrink of 1/2; reflection across the x axis Horizontal translation 1 unit left; vertical translation 1 unit down; vertical stretch of 2 Horizontal translation 2 units right; reflection across the x-axis Vertical translation 1 unit up; vertical stretch of 2; reflection across the x-axis Reflection across the x - axis; vertical translation 2 units down Horizontal translation 2 units left Horizontal translation 2 units right Vertical translation 1 unit down; vertical shrink of 1/2; reflection across the x-axis Vertical translation 2 units down Horizontal translation 1 unit left; vertical translation 2 units up; vertical stretch of 2; reflection across the x - axis f(x) = - =-½ ½ (x − 1)²+1 f(x) = x²-2 f(x) = -2(x+1)²+2 f(x)=2(x+1)²-1 f(x)=-(x-2)² f(x)=(x-2)² f(x) = f(x) = -2x²+1 f(x) = -x²-2 f(x) = (x+2)²arrow_forward
- What is the vertex, increasing interval, decreasing interval, domain, range, root/solution/zero, and the end behavior?arrow_forwardThe augmented matrix of a linear system has been reduced by row operations to the form shown. Continue the appropriate row operations and describe the solution set of the original system. 1 -1 0 1 -2 00-4 0-6 0 0 1 - 3 3 0 001 4arrow_forwardSolve the system. X1 - 3x3 = 10 4x1 + 2x2 + 3x3 = 22 ×2 + 4x3 = -2arrow_forward
- Use the quadratic formula to find the zeros of the quadratic equation. Y=3x^2+48x+180arrow_forwardM = log The formula determines the magnitude of an earthquake, where / is the intensity of the earthquake and S is the intensity of a "standard earthquake." How many times stronger is an earthquake with a magnitude of 8 than an earthquake with a magnitude of 6? Show your work.arrow_forwardNow consider equations of the form ×-a=v = √bx + c, where a, b, and c are all positive integers and b>1. (f) Create an equation of this form that has 7 as a solution and an extraneous solution. Give the extraneous solution. (g) What must be true about the value of bx + c to ensure that there is a real number solution to the equation? Explain.arrow_forward
- The equation ×+ 2 = √3x+10 is of the form ×+ a = √bx + c, where a, b, and c are all positive integers and b > 1. Using this equation as a model, create your own equation that has extraneous solutions. (d) Using trial and error with numbers for a, b, and c, create an equation of the form x + a = √bx + c, where a, b, and c are all positive integers and b>1 such that 7 is a solution and there is an extraneous solution. (Hint: Substitute 7 for x, and choose a value for a. Then square both sides so you can choose a, b, and c that will make the equation true.) (e) Solve the equation you created in Part 2a.arrow_forwardA basketball player made 12 out of 15 free throws she attempted. She wants to know how many consecutive free throws she would have to make to raise the percent of successful free throws to 85%. (a) Write an equation to represent this situation. (b) Solve the equation. How many consecutive free throws would she have to make to raise her percent to 85%?arrow_forwardA boat is 15 ft away from a point perpendicular to the shoreline. A person stands at a point down the shoreline so that a 65° angle is formed between the closest point to the boat, the person, and the boat. How far is the person from the boat? Round your answer to the nearest tenth of a foot. Show your work. boat 15 ft d 65° personarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Interpreting Graphs of Quadratic Equations (GMAT/GRE/CAT/Bank PO/SSC CGL) | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=BHgewRcuoRM;License: Standard YouTube License, CC-BY
Solve a Trig Equation in Quadratic Form Using the Quadratic Formula (Cosine, 4 Solutions); Author: Mathispower4u;https://www.youtube.com/watch?v=N6jw_i74AVQ;License: Standard YouTube License, CC-BY