APPLIED STAT.IN BUS.+ECONOMICS
6th Edition
ISBN: 9781259957598
Author: DOANE
Publisher: RENT MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 43CE
In a study of paint peel problems, a regression was suggested to predict defects per million (the response variable). The intended predictors were supplier (four suppliers, coded as binaries) and substrate (four materials, coded as binaries). There were 11 observations. Explain why regression is impractical in this case, and suggest a remedy.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A survey of high school students was done to examine whether students had ever driven a car after consuming a substantial amount of alcohol (1=yes, 0=no). Data was collected on their sex (male/female), race (White/non-White), and grade level (9,10,11,12). Researchers realized that the impact of race on consuming alcohol before driving might vary by grade level and decided to fit the following model.
Variable
Coding = 1 if
Intercept
Sex ()
Female
Race ()
Black
Grade level (
9th grade
10th grade
11th grade
[Reference = 12th grade]
Attached is the logistic model
1. Compute the OR of drinking before driving for students who self-reported as Black versus non-Black in the 9th grade, adjusting for gender.
2. Compute the OR of drinking before driving for students who self-reported as Black versus non-Black in the 12th grade, adjusting for gender.
3. Compute the OR of drinking before driving for someone in the 9th grade versus 12th grade for a student who…
If we have cross sectional transportation data with the following variables: mode of transportation (air, train, truck), revenue, weight, distance, commodities, Location of origin and destination, and Year, but with different samples for different years.
If i use panel data regression analysis techniques such as pooled OLS, Fixed effects or random effects, do i need to create a dummy variable for each year and include it into my model?
Suppose researchers at an abdominal transplant clinic are concerned about the rate of graft loss due to diabetes status prior to receiving a donor kidney. Research has shown that gender discordance, or receiving a gender from a donor of an opposite gender may increase the risk of both exposure and outcome after transplant. Assume the following tables represent the stratified analysis of the potential confounding variable. (9 points)
Gender Discordance
Graft Failure
No Graft Failure
Total
Diabetes II
23
10
33
No Diabetes II
4
44
48
Total
27
54
81
Gender Concordance
Graft Failure
No Graft Failure
Total
Diabetes II
9
34
43
No Diabetes II
12
87
99
Total
21
121
142
A) Calculate the stratum specific estimates for the odds ratios in each strata.
B) Observe the difference in the odds ratios. Based on observation alone, what are we likely to conclude regarding the relationship between outcome and exposure…
Chapter 13 Solutions
APPLIED STAT.IN BUS.+ECONOMICS
Ch. 13.1 - Observations are taken on net revenue from sales...Ch. 13.1 - Observations are taken on sales of a certain...Ch. 13.1 - Prob. 3SECh. 13.1 - A regression model to predict Y, the...Ch. 13.2 - Refer to the ANOVA table below. (a) State the...Ch. 13.2 - Refer to the ANOVA table below. (a) State the...Ch. 13.2 - Prob. 7SECh. 13.2 - Refer to the ANOVA table below. (a) State the...Ch. 13.3 - Observations are taken on net revenue from sales...Ch. 13.3 - Observations are taken on sales of a certain...
Ch. 13.3 - Prob. 11SECh. 13.3 - A regression model to predict Y, the state...Ch. 13.4 - A regression of accountants starting salaries in a...Ch. 13.4 - An agribusiness performed a regression of wheat...Ch. 13.5 - Prob. 15SECh. 13.5 - A regression model to predict the price of...Ch. 13.5 - Prob. 17SECh. 13.5 - Prob. 18SECh. 13.6 - Prob. 19SECh. 13.6 - Prob. 20SECh. 13.7 - Prob. 21SECh. 13.7 - Using the Metals data, construct a correlation...Ch. 13.8 - Prob. 23SECh. 13.8 - Which violations of regression assumptions, if...Ch. 13 - (a) List two limitations of simple regression. (b)...Ch. 13 - (a) What does represent in the regression model?...Ch. 13 - Prob. 3CRCh. 13 - Prob. 4CRCh. 13 - Prob. 5CRCh. 13 - Prob. 6CRCh. 13 - Prob. 7CRCh. 13 - Prob. 8CRCh. 13 - Prob. 9CRCh. 13 - (a) State the formula for the standard error of...Ch. 13 - (a) What is a binary predictor? (b) Why is a...Ch. 13 - Prob. 12CRCh. 13 - Prob. 13CRCh. 13 - (a) What is multicollinearity? (b) What are its...Ch. 13 - Prob. 15CRCh. 13 - (a) State the formula for a variance inflation...Ch. 13 - Prob. 17CRCh. 13 - Prob. 18CRCh. 13 - Prob. 19CRCh. 13 - Prob. 20CRCh. 13 - (a) Name two ways to detect autocorrelated...Ch. 13 - (a) What is a lurking variable? How might it be...Ch. 13 - Prob. 23CRCh. 13 - Instructions for Data Sets: Choose one of the data...Ch. 13 - Note: Exercises marked are based on optional...Ch. 13 - Prob. 27CECh. 13 - Note: Exercises marked are based on optional...Ch. 13 - Note: Exercises marked are based on optional...Ch. 13 - Prob. 30CECh. 13 - Prob. 31CECh. 13 - Prob. 32CECh. 13 - Prob. 33CECh. 13 - Prob. 34CECh. 13 - Prob. 35CECh. 13 - Note: Exercises marked are based on optional...Ch. 13 - Note: Exercises marked are based on optional...Ch. 13 - Note: Exercises marked are based on optional...Ch. 13 - Prob. 39CECh. 13 - Prob. 40CECh. 13 - Prob. 41CECh. 13 - In a model of Fords quarterly revenue TotalRevenue...Ch. 13 - In a study of paint peel problems, a regression...Ch. 13 - A hospital emergency room analyzed n = 17,664...Ch. 13 - Prob. 45CECh. 13 - A researcher used stepwise regression to create...Ch. 13 - A sports enthusiast created an equation to predict...Ch. 13 - An expert witness in a case of alleged racial...Ch. 13 - Prob. 50CECh. 13 - Prob. 51CECh. 13 - Prob. 52CECh. 13 - Which statement is correct concerning one-factor...Ch. 13 - Prob. 2ERQCh. 13 - Prob. 3ERQCh. 13 - Prob. 4ERQCh. 13 - Prob. 5ERQCh. 13 - Prob. 6ERQCh. 13 - Prob. 7ERQCh. 13 - Prob. 8ERQCh. 13 - Prob. 9ERQCh. 13 - Prob. 10ERQCh. 13 - Prob. 11ERQCh. 13 - Prob. 12ERQCh. 13 - Prob. 13ERQCh. 13 - Prob. 14ERQCh. 13 - Prob. 15ERQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- Consider a linear regression model that relates school expenditures and family background to student performance in Massachusetts using 224 school districts. The response variable is the mean score on the MCAS (Massachusetts Comprehensive Assessment System) exam given in May 1998 to 10th-graders. Four explanatory variables are used: (1) STR is the student-to-teacher ratio, (2) TSAL is the average teacher’s salary, (3) INC is the median household income, and (4) SGL is the percentage of single family households. The Excel Regression output for the sample regression equation is given below. (a) What proportion of the variation in MCAS score is explained by the explanatory variables? (b) At the 5% level, are the explanatory variables jointly significant in explaining MCAS score? Explain briefly. (c) At the 5% level, which variables are individually significant at predicting MCAS score? Explain briefly. (d) Suppose a second regression model (Model 2) was generated using only…arrow_forwardConsider a linear regression model that relates school expenditures and family background to student performance in Massachusetts using 224 school districts. The response variable is the mean score on the MCAS (Massachusetts Comprehensive Assessment System) exam given in May 1998 to 10th-graders. Four explanatory variables are used: (1) STR is the student-to-teacher ratio, (2) TSAL is the average teacher’s salary, (3) INC is the median household income, and (4) SGL is the percentage of single family households. The Excel Regression output for the sample regression equation is given below. (a) What proportion of the variation in MCAS score is explained by the explanatory variables? (b) At the 5% level, are the explanatory variables jointly significant in explaining MCAS score? Explain briefly. (c) At the 5% level, which variables are individually significant at predicting MCAS score? Explain briefly. (d) Suppose a second regression model (Model 2) was generated using only…arrow_forwardConsider a linear regression model that relates school expenditures and family background to student performance in Massachusetts using 224 school districts. The response variable is the mean score on the MCAS (Massachusetts Comprehensive Assessment System) exam given in May 1998 to 10th-graders. Four explanatory variables are used: (1) STR is the student-to-teacher ratio, (2) TSAL is the average teacher’s salary, (3) INC is the median household income, and (4) SGL is the percentage of single family households. The Excel Regression output for the sample regression equation is given below. (a) What proportion of the variation in MCAS score is explained by the explanatory variables? (b) At the 5% level, are the explanatory variables jointly significant in explaining MCAS score? Explain briefly. (c) At the 5% level, which variables are individually significant at predicting MCAS score? Explain briefly. (d) Suppose a second regression model (Model 2) was generated using only…arrow_forward
- Suppose researchers are interested in exploring the factors which affect depression for Australian adults. The researchers recruited a sample of 99 Australian adults and collected data on several variables which may influence depression. Note that here depression is represented by a score, with higher values representing higher levels of depression. The variables for this study are listed below: Age Gender (0 = female, 1 = male) Stress level Anxiety level Depression Prior to running their analysis (multiple regression), the researchers would like to check the regression assumptions for the data. Which of the assumptions below is not an assumption for multiple regression? A) Sphericity B) Linearity and Additivity C) Equal variances D) Normality E) Metric scalesarrow_forwardD& T LTD marketing team needed more information about the effectiveness of their 3 main mode of advertising. To determine which type is the most effective, the manager collected one week’s data from 25 randomly selected stores. For each store, the following variables were recorded: Weekly gross sales Weekly expenditure on direct mailing (Direct) Weekly expenditure on newspaper advertising (Newspaper) Weekly expenditure on television commercials (Television) Following is the regression output based on the above-mentioned data. SUMMARY OUTPUT Regression Statistics Multiple R 0.442…arrow_forwardSuppose an All Greens store in Sonoma, California, wants to estimate a range of advertising costs appropriate to its store. If it spends too little on advertising, it will not reach enough customers. However, it does not want to overspend on advertising for this type and size of store. At this store, x1 = 163, x2 = 2.4, x3 = 188, x5 = 6.6, and x6 = 10. Use these data to predict x4 (advertising costs) and find an 80% confidence interval for your prediction. (Use 2 decimal places.) prediction lower limit upper limit At the 80% confidence level, what range of advertising costs do you think is appropriate for this store? (Round to nearest integer.) lower limit $ upper limit $arrow_forward
- Dr. Ortega took a wide sample of people and timed them running a mile. There is a lot of variability in time, with some runners taking 5 minutes and others 20 minutes or more. Analyzing this further, Dr. Ortega wants to know what factors influence running speed? She hypothesizes that physical fitness and age play important roles, as do physical health and weight. For further clarity, Dr. Ortega calculates r2 for each variable and finds that the effect size for physical fitness is 29%.arrow_forwardDr. Ortega took a wide sample of people and timed them running a mile. There is a lot of variability in time, with some runners taking 5 minutes and others 20 minutes or more. Analyzing this further, Dr. Ortega wants to know what factors influence running speed? She hypothesizes that physical fitness and age play important roles, as do physical health and weight. For further clarity, Dr. Ortega calculates r2 for each variable and finds that the effect size for physical fitness is 29%. In 50 words or less, explain what this means. View keyboard shortcuts EditViewInsertFormatToolsTable 12pt Paragraph Dr. Ortega took a wide sample of people and timed them running a mile. There is a lot of variability in time, with some runners taking 5 minutes and others 20 minutes or more. Analyzing this further, Dr. Ortega wants to know what factors influence running speed? She hypothesizes that physical fitness and age play important roles, as do physical…arrow_forwardAs part of a study designed to compare hybrid and similarly equipped conventional vehicles, Consumer Reports tested a variety of classes of hybrid and all-gas model cars and sport utility vehicles (SUV’s). You are given the required information in the Excel data-file named HybridTest. Test for any significant effect due to Class, Type using multiple regressions. Create dummy variables for Class and Type. Use alpha=0.05 Make/Model Class Type MPG Honda Civic Small Car Hybrid 37 Honda Civic Small Car Conventional 28 Toyota Prius Small Car Hybrid 44 Toyota Corolla Small Car Conventional 32 Chevrolet Malibu Midsize Car Hybrid 27 Chevrolet Malibu Midsize Car Conventional 23 Nissan Altima Midsize Car Hybrid 32 Nissan Altima Midsize Car Conventional 25 Ford Escape Small SUV Hybrid 27 Ford Escape Small SUV Conventional 21 Saturn Vue Small SUV Hybrid 28 Saturn Vue Small SUV Conventional 22 Lexus RX Midsize SUV Hybrid 23 Lexus RX Midsize SUV Conventional 19…arrow_forward
- 4. Housing Prices in New YorkWe have looked at predicting the price (in s) of New York homes based on the size (in thousands of square feet), using the data in HomesForSaleNY. Two other variables in the dataset are the number of bedrooms and the number of bathrooms. Use technology to create a multiple regression model to predict price based on all three variables: size, number of bedrooms, and number of bathrooms. Price Size Beds Baths 145 1.3 3 1.5 875 2.9 7 3.75 300 1.5 3 2.5 370 1.1 2 1 268 1.5 2 2 1399 4.8 6 5 1125 3.1 3 2.5 299 1.4 3 2 110 1.2 3 1 2999 6 7 8 170 1 2 1 269 1.5 3 1.5 150 1 2 1.5 288 1.8 3 2.1 350 1.3 3 2 120 0.9 1 1 309 2.4 4 2.5 1500 1.5 2 1.5 635 2.5 4 2.5 350 0.9 2 1 459 1.8 4 2.5 275 2.9 4 1.5 275 1.8 3 2 2500 3.7 3 3 187 1.4 3 1.5 238 1.7 3 1.5 155 0.7 1 1 175 1.6 3 1.5 569 3.2 4 2 105 1.2 2 2.5 a) Which of the variables which are significant at the 5% level? b) Which variable is the most…arrow_forwardIn a study of spot number in beetles, which have normally-distributed spot counts, you collect 46 beetles from the wild and count their spots. The average spot count is 8.7. You estimate the heritability using parent-offspring regression, which gives an estimate of 0.83. Then you split the population into two classes: those with 9 or more spots and those with 8 or fewer spots. The first group has an average of 11.3 spots and the second has an average of 6.8 spots. The offspring produced by the first group (the larger beetles) have an average of 10.78 spots. What is the expected mean of the second group?arrow_forwardA business analyst wants to classify 22 successful small-to-medium size manufacturing companies into meaningful groups for future analyses. The analyst collects data on the number of clients, rate of return, sales, and the years the companies have been in business. The following scatterplot is showing the relationship between two variables: Sales 50000000- 40000000 30000000 20000000 10000000- 50 Scatterplot of Sales vs Clients 75 100 Clients 125 150 O The regression line have many possibilities O The regression line is the best fitted line, where the errors or residuals are the minimum value O The regression line makes no sense here O We need to stratify the dataarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY