EP THINKING MATHEMATICALLY-ACCESS
7th Edition
ISBN: 9780135963388
Author: Blitzer
Publisher: PEARSON CO
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13, Problem 42RE
A country has 100 seats in the congress, divided among the three states according to their respective populations. The table shows each state's population before and after the country’s population increase.
State | A | B | C | Total |
Original Population | 143,796 | 41,090 | 15,114 | 200,000 |
New Population | 143,796 | 41,420 | 15,304 | 200,520 |
a. Use Hamilton's method to apportion the 100 congressional seats using the original population.
b. Find the percent increase, to the nearest tenth of a percent, in the population of state B and state C.
c. Use Hamilton's method to apportion the 100 congressional seats using the new population. Does the population paradox occur?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
28. (a) Under what conditions do we say that two random variables X and Y are
independent?
(b) Demonstrate that if X and Y are independent, then it follows that E(XY) =
E(X)E(Y);
(e) Show by a counter example that the converse of (ii) is not necessarily true.
7. [10 marks]
Let G = (V,E) be a 3-connected graph with at least 6 vertices. Let C be a cycle in G
of length 5. We show how to find a longer cycle in G.
(a) Let x be a vertex of G that is not on C. Show that there are three C-paths
Po, P1, P2 that are disjoint except at the shared initial vertex and only intersect
C at their final vertices.
(b) Show that at least two of P0, P1, P2 have final vertices that are adjacent along C.
(c) Combine two of Po, P1, P2 with C to produce a cycle in G that is longer than C.
1. Let X and Y be random variables and suppose that A = F. Prove that
Z XI(A)+YI(A) is a random variable.
Chapter 13 Solutions
EP THINKING MATHEMATICALLY-ACCESS
Ch. 13.1 - CHECK POINT 1 Four candidates are running for...Ch. 13.1 - CHECK POINT 2 Table 13.2 on page 841 shows the...Ch. 13.1 - Prob. 3CPCh. 13.1 - Prob. 4CPCh. 13.1 - CHECK POINT 5 Table 13.2 on page 841 shows the...Ch. 13.1 - Fill in each blank so that the resulting statement...Ch. 13.1 - Fill in each blank so that the resulting statement...Ch. 13.1 - Fill in each blank so that the resulting statement...Ch. 13.1 - Fill in each blank so that the resulting statement...Ch. 13.1 - Fill in each blank so that the resulting statement...
Ch. 13.1 - Prob. 6CVCCh. 13.1 - Fill in each blank so that the resulting statement...Ch. 13.1 - Prob. 8CVCCh. 13.1 - In Exercises 1-2, the preference ballots for three...Ch. 13.1 - In Exercises 1-2, the preference ballots for three...Ch. 13.1 - In Exercises 3-4, four students are running for...Ch. 13.1 - Prob. 4ECh. 13.1 - Your class is given the option of choosing a day...Ch. 13.1 - Prob. 6ECh. 13.1 - Prob. 7ECh. 13.1 - 8. The travel club members are voting for the...Ch. 13.1 - Four professors are running for chair of the...Ch. 13.1 - Prob. 10ECh. 13.1 - Prob. 11ECh. 13.1 - Use the preference table shown in Exercise 8....Ch. 13.1 - Prob. 13ECh. 13.1 - Use the preference table shown in Exercise 10. Who...Ch. 13.1 - Use the preference table shown in Exercise 7....Ch. 13.1 - Use the preference table shown in Exercise 8....Ch. 13.1 - Use the preference table shown in Exercise 9. Who...Ch. 13.1 - Prob. 18ECh. 13.1 - Prob. 19ECh. 13.1 - Prob. 20ECh. 13.1 - In Exercises 19-22, suppose that the pairwise...Ch. 13.1 - Prob. 22ECh. 13.1 - Prob. 23ECh. 13.1 - Prob. 24ECh. 13.1 - Use the preference table shown in Exercise 9. Who...Ch. 13.1 - Prob. 26ECh. 13.1 - In Exercises 27-30, 72 voters are asked to rank...Ch. 13.1 - Prob. 28ECh. 13.1 - In Exercises 27-30, 72 voters are asked to rank...Ch. 13.1 - In Exercises 27-30, 72 voters are asked to rank...Ch. 13.1 - Prob. 31ECh. 13.1 - Prob. 32ECh. 13.1 - Prob. 33ECh. 13.1 - The programmers at the Theater Channel need to...Ch. 13.1 - 35. Five candidates. A, B, C, D, and E, are...Ch. 13.1 - Prob. 36ECh. 13.1 - Prob. 37ECh. 13.1 - Three candidates, A, B, and C, are running for...Ch. 13.1 - What is a preference ballot?Ch. 13.1 - Prob. 40ECh. 13.1 - Prob. 41ECh. 13.1 - 42. Describe the Borda count method. Is it...Ch. 13.1 - What is the plurality-with-elimination method? Why...Ch. 13.1 - What is the pairwise comparison method? Is it...Ch. 13.1 - Prob. 45ECh. 13.1 - Prob. 46ECh. 13.1 - Prob. 47ECh. 13.1 - Prob. 48ECh. 13.1 - Prob. 49ECh. 13.1 - Make Sense? In Exercises 49-52, determine whether...Ch. 13.1 - Make Sense? In Exercises 49-52, determine whether...Ch. 13.1 - Prob. 52ECh. 13.1 - Prob. 53ECh. 13.1 - In Exercises 53-56, construct a preference table...Ch. 13.1 - Prob. 55ECh. 13.1 - In Exercises 53-56, construct a preference table...Ch. 13.1 - 57. Research and present a group report on how...Ch. 13.1 - Research and present a group report on how voting...Ch. 13.2 - CHECK POINT I The 14 members of the school board...Ch. 13.2 - Prob. 2CPCh. 13.2 - CHECK POINT 3 An election with 120 voters and...Ch. 13.2 - Prob. 4CPCh. 13.2 - Fill in each blank so that the resulting statement...Ch. 13.2 - Fill in each blank so that the resulting statement...Ch. 13.2 - Fill in each blank so that the resulting statement...Ch. 13.2 - Prob. 4CVCCh. 13.2 - Prob. 5CVCCh. 13.2 - Fill in each blank so that the resulting statement...Ch. 13.2 - Voters in a small town are considering four...Ch. 13.2 - 2. Fifty-three people are asked to taste-test and...Ch. 13.2 - Prob. 3ECh. 13.2 - Prob. 4ECh. 13.2 - A town is voting on an ordinance dealing with...Ch. 13.2 - A town is voting on an ordinance dealing with...Ch. 13.2 - 7. The following preference table gives the...Ch. 13.2 - Prob. 8ECh. 13.2 - 9. Members of the Student Activity Committee at a...Ch. 13.2 - Prob. 10ECh. 13.2 - Prob. 11ECh. 13.2 - Prob. 12ECh. 13.2 - In Exercises 11-18, the preference table for an...Ch. 13.2 - Prob. 14ECh. 13.2 - In Exercises 11-18, the preference table for an...Ch. 13.2 - In Exercises 11-18, the preference table for an...Ch. 13.2 - In Exercises 11-18, the preference table for an...Ch. 13.2 - Prob. 18ECh. 13.2 - Prob. 19ECh. 13.2 - Describe the majority criterion.Ch. 13.2 - Describe the head-to-head criterion.Ch. 13.2 - Describe the monotonicity criterion.Ch. 13.2 - 23. Describe the irrelevant alternatives...Ch. 13.2 - 24. In your own words, state Arrow’s Impossibility...Ch. 13.2 - Prob. 25ECh. 13.2 - Is it possible to have election results using a...Ch. 13.2 - Prob. 27ECh. 13.2 - Prob. 28ECh. 13.2 - Make Sense? In Exercises 28-31, determine whether...Ch. 13.2 - Prob. 30ECh. 13.2 - Make Sense? In Exercises 28-31, determine whether...Ch. 13.2 - Prob. 32ECh. 13.2 - Prob. 33ECh. 13.2 - Prob. 34ECh. 13.2 - Prob. 35ECh. 13.2 - Citizen-initiated ballot measures often present...Ch. 13.3 - CHECK POINT 1 The Republic of Amador is composed...Ch. 13.3 - CHECK POINT 2 Refer to Check Point 1 on page 865....Ch. 13.3 - Prob. 3CPCh. 13.3 - Prob. 4CPCh. 13.3 - Prob. 5CPCh. 13.3 - Fill in each blank so that the resulting statement...Ch. 13.3 - Fill in each blank so that the resulting statement...Ch. 13.3 - Fill in each blank so that the resulting statement...Ch. 13.3 - Prob. 4CVCCh. 13.3 - Prob. 5CVCCh. 13.3 - Fill in each blank so that the resulting statement...Ch. 13.3 - Fill in each blank so that the resulting statement...Ch. 13.3 - Throughout this Exercise Set, in computing...Ch. 13.3 - Throughout this Exercise Set, in computing...Ch. 13.3 - Throughout this Exercise Set, in computing...Ch. 13.3 - Throughout this Exercise Set, in computing...Ch. 13.3 - A university is composed of five schools. The...Ch. 13.3 - Prob. 6ECh. 13.3 - 7. A small country is composed of five states. A,...Ch. 13.3 - 8. A small country is comprised of four states, A,...Ch. 13.3 - Prob. 9ECh. 13.3 - Prob. 10ECh. 13.3 - The police department in a large city has 180 new...Ch. 13.3 - Prob. 12ECh. 13.3 - Prob. 13ECh. 13.3 - Prob. 14ECh. 13.3 - 15. Twenty sections of bilingual math courses,...Ch. 13.3 - Prob. 16ECh. 13.3 - A rapid transit service operates 200 buses along...Ch. 13.3 - Refer to Exercise 11. Use Webster’s method to...Ch. 13.3 - A hospital has a nursing staff of 250 nurses...Ch. 13.3 - A hospital has a nursing staff of 250 nurses...Ch. 13.3 - A hospital has a nursing staff of 250 nurses...Ch. 13.3 - A hospital has a nursing staff of 250 nurses...Ch. 13.3 - The table shows the 1790 United States census. In...Ch. 13.3 - Prob. 24ECh. 13.3 - Prob. 25ECh. 13.3 - Prob. 26ECh. 13.3 - 27. Describe how to find a standard divisor.
Ch. 13.3 - 28. Describe how to determine a standard quota for...Ch. 13.3 - Prob. 29ECh. 13.3 - Prob. 30ECh. 13.3 - Describe the apportionment problem.Ch. 13.3 - Prob. 32ECh. 13.3 - Prob. 33ECh. 13.3 - Explain why Hamilton’s method satisfies the quota...Ch. 13.3 - Prob. 35ECh. 13.3 - Suppose that you guess at a modified divisor, d,...Ch. 13.3 - Describe the difference between the modified...Ch. 13.3 - In allocating congressional seats, how does...Ch. 13.3 - 39. How are modified quotas rounded using...Ch. 13.3 - Why might it take longer to guess at a modified...Ch. 13.3 - In this Exercise Set, we have used apportionment...Ch. 13.3 - Prob. 42ECh. 13.3 - Make Sense? In Exercises 42-45, determine whether...Ch. 13.3 - Make Sense? In Exercises 42-45, determine whether...Ch. 13.3 - Prob. 45ECh. 13.3 - Prob. 46ECh. 13.3 - Prob. 47ECh. 13.3 - Prob. 48ECh. 13.3 - A small country is composed of three states, A, B,...Ch. 13.3 - Prob. 50ECh. 13.3 - Research and present a group| report on a brief...Ch. 13.4 - CHECK POINT I Table 13.42 shows the populations of...Ch. 13.4 - CHECK POINT 2 A small country has 100 seats in the...Ch. 13.4 - Prob. 3CPCh. 13.4 - Prob. 1CVCCh. 13.4 - Prob. 2CVCCh. 13.4 - Prob. 3CVCCh. 13.4 - Prob. 4CVCCh. 13.4 - 1. The mathematics department has 30 teaching...Ch. 13.4 - 2. A school district has 57 new laptop computers...Ch. 13.4 - 3. The table shows the populations of three states...Ch. 13.4 - The table at the top of the next column shows the...Ch. 13.4 - A small country has 24 seats in the congress,...Ch. 13.4 - Prob. 6ECh. 13.4 - 7. A town has 40 mail trucks and four districts in...Ch. 13.4 - 8. A town has five districts in which mail is...Ch. 13.4 - A corporation has two branches A and B. Each year...Ch. 13.4 - 10. A corporation has three branches, A, B, and C...Ch. 13.4 - Prob. 11ECh. 13.4 - a. A country has three states, state A, with a...Ch. 13.4 - 13. In Exercise 12, use Jefferson’s method with ...Ch. 13.4 - Prob. 14ECh. 13.4 - Prob. 15ECh. 13.4 - What is the new-states paradox?Ch. 13.4 - 17. According to Balinski and Young’s...Ch. 13.4 - Make Sense? In Exercises 18-21, determine whether...Ch. 13.4 - Prob. 19ECh. 13.4 - Prob. 20ECh. 13.4 - Make Sense? In Exercises 18-21, determine whether...Ch. 13.4 - Give an example of a country with three states in...Ch. 13 - 1. The 12 preference ballots for four candidates...Ch. 13 - (In Exercises 2-5, be sure to refer to the...Ch. 13 - (In Exercises 2-5, be sure to refer to the...Ch. 13 - (In Exercises 2-5, be sure to refer to the...Ch. 13 - (In Exercises 2-5, be sure to refer to the...Ch. 13 - Prob. 6RECh. 13 - In Exercises 6-9, the Theater Society members are...Ch. 13 - In Exercises 6-9, the Theater Society members are...Ch. 13 - Prob. 9RECh. 13 - Prob. 10RECh. 13 - Prob. 11RECh. 13 - Prob. 12RECh. 13 - In Exercises 10-13, four candidates, A, B, C, and...Ch. 13 - In Exercises 14-16, voters in a small town are...Ch. 13 - In Exercises 14-16, voters in a small town are...Ch. 13 - Prob. 16RECh. 13 - Prob. 17RECh. 13 - Prob. 18RECh. 13 - Prob. 19RECh. 13 - Use the following preference table to solve...Ch. 13 - Prob. 21RECh. 13 - Prob. 22RECh. 13 - Prob. 23RECh. 13 - Prob. 24RECh. 13 - Use the following preference table, which shows...Ch. 13 - Prob. 26RECh. 13 - Prob. 27RECh. 13 - Prob. 28RECh. 13 - Prob. 29RECh. 13 - Prob. 30RECh. 13 - Prob. 31RECh. 13 - Prob. 32RECh. 13 - Prob. 33RECh. 13 - Prob. 34RECh. 13 - Prob. 35RECh. 13 - Prob. 36RECh. 13 - Prob. 37RECh. 13 - Prob. 38RECh. 13 - In Exercises 37-40, a country is composed of four...Ch. 13 - Prob. 40RECh. 13 - Prob. 41RECh. 13 - A country has 100 seats in the congress, divided...Ch. 13 - Prob. 43RECh. 13 - Is the following statement true or false? There...Ch. 13 - Prob. 1TCh. 13 - In Exercises 1-8, three candidates, A, B, and C,...Ch. 13 - Prob. 3TCh. 13 - Prob. 4TCh. 13 - Prob. 5TCh. 13 - Prob. 6TCh. 13 - Prob. 7TCh. 13 - Prob. 8TCh. 13 - Prob. 9TCh. 13 - Prob. 10TCh. 13 - Prob. 11TCh. 13 - Prob. 12TCh. 13 - Prob. 13TCh. 13 - Prob. 14TCh. 13 - Prob. 15TCh. 13 - Prob. 16TCh. 13 - In Exercises 16-24, an HMO has 10 doctors to be...Ch. 13 - Prob. 18TCh. 13 - Prob. 19TCh. 13 - Prob. 20TCh. 13 - Prob. 21TCh. 13 - Prob. 22TCh. 13 - Prob. 23TCh. 13 - Prob. 24TCh. 13 - Prob. 25T
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- 30. (a) What is meant by the term "product measur"? ANDarrow_forward14. Define X-(H) for a given H E R. Provide a simple example.arrow_forwardLet G be a connected graph with n ≥ 2 vertices. Let A be the adjacency matrix of G. Prove that the diameter of G is the least number d such that all the non-diagonal entries of the matrix A are positive.arrow_forward
- find the general soultion (D-DxDy-2Dx)Z = sin(3x+4y) + x²yarrow_forward3. Show that (a) If X is a random variable, then so is |X|;arrow_forward8. [10 marks] Suppose that 15 people are at a dinner and that each person knows at least 9 of the others. Can the diners be seated around a circular table so that each person knows both of their immediate neighbors? Explain why your answer is correct.arrow_forward
- 19. Let X be a non-negative random variable. Show that lim nE (IX >n)) = 0. E lim (x)-0. = >arrow_forward9. [10 marks] Consider the following graph G. (a) Find the Hamilton closure of G. Explain why your answer is correct. (b) Is G Hamiltonian? Explain why your answer is correct.arrow_forward7. [10 marks] Let G = (V,E) be a 3-connected graph with at least 6 vertices. Let C be a cycle in G of length 5. We show how to find a longer cycle in G. Ꮖ (a) Let x be a vertex of G that is not on C. Show that there are three C-paths Po, P1, P2 that are disjoint except at the shared initial vertex x and only intersect C at their final vertices. (b) Show that at least two of Po, P1, P2 have final vertices that are adjacent along C.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
UG/ linear equation in linear algebra; Author: The Gate Academy;https://www.youtube.com/watch?v=aN5ezoOXX5A;License: Standard YouTube License, CC-BY
System of Linear Equations-I; Author: IIT Roorkee July 2018;https://www.youtube.com/watch?v=HOXWRNuH3BE;License: Standard YouTube License, CC-BY